Sustainable Water Integrated Management (SWIM) -Support Mechanism

Project funded by the European Union

Two days training on the operation and management of WWTPs

9-10 September, Murcia

Industrial wastewater treatment plants design

Presented by: Ricardo Egea

- **1. BIONET Engineering**
- 2. Industrial wastewater
- 3. Methodology for design
- 4. Technologies
- 5. Examples of advanced treatments

BIONET technology company specialized in:

- Digestion and fermentation process
- --- Membrane filtration/separation processes
- Bio-process engineering

We apply this knowledge to solve PRODUCTION AND ENVIRONMENTAL NEEDS for companies in the energy, food, chemistry, pharma and other process industries.

We have an independent central facilities of 2500 m2 with engineering area, process development center, a workshop and a FAT area for the start-up and quality control of many of our developments.


Bioreactors/Fermentors

BIONET we engineer and build bioreactors and digestors for R&D, Environmental and Production uses.

Industrial fermentation

Environmental treatment

Membrane filtration

BIONET we engineer and build membrane clarification and filtration systems for bio-products. We have our own process development center

What is industrial wastewater?

What is industrial wastewater?

It includes all waterborne waste from facilities except sewage.

Quality and quantity

- Raw process material.
- Industrial process that generates the water: raw material washing, finished goods wash water, boiler and cooling tower blowdown, etc.
- Number of times the water has been reused (potential increasing or decreasing the concentration level of contaminants).
- **Reactions that occur during the industrial process.**
- Temperature or additives such as biocides, antiscalants or pH adjusters used.

Potential reuse of industrial waste water

With appropriate management, which may include treatment, industrial wastewater can be reused for a wide range of purposes:

Cooling

Industrial uses

- Material washing
- In production line (dilutions)
- Boiler or cooling tower blowdown

Non-industrial uses

- Crop/landscape irrigation
- Dust suppression

- Commercial car washing facilities
- **Construction (i.e. road compaction)**

Fire protection

Any proposed use of industrial wastewater must be underpinned by a specific health and environmental risk assessment.

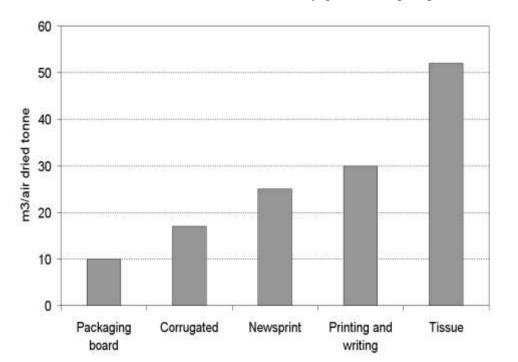
Potential reuse of industrial waste water

Wastewater reuse potential for industries

High potential	Medium potential	Low potential
•Pulp and paper	•Slaughterhouse	•Tanneries & leather finishing
•Cotton textile	•Meat processing	•Pesticide
•Glass and steel	•Dairy	•Rubber
	•Canning and food processing	•Aluminium
	•Distillery	•Explosives manufacturing
	•Wool textile	•Paint manufacturing
	•Chemical	
	•Fertilizer	
	 Petroleum/Oil refining 	

High volume of wastewater + low pollutant concentration \rightarrow High potential Low volume of wastewater + high pollutant concentration \rightarrow Low potential

Pulp and paper


Wastewater sources

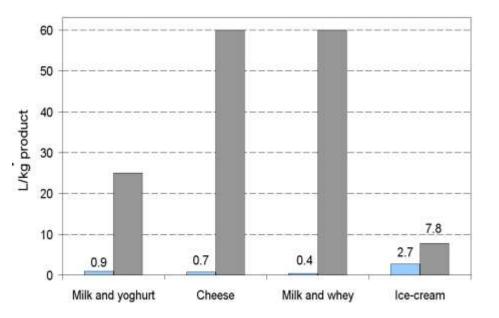
- Rejects from stock cleaning
- Excess whitewater

Temporary and accidental discharges

Cooling and sealing waters

Volume of effluent VS type of paper

Typical contaminant charges (kg/tonne of product)

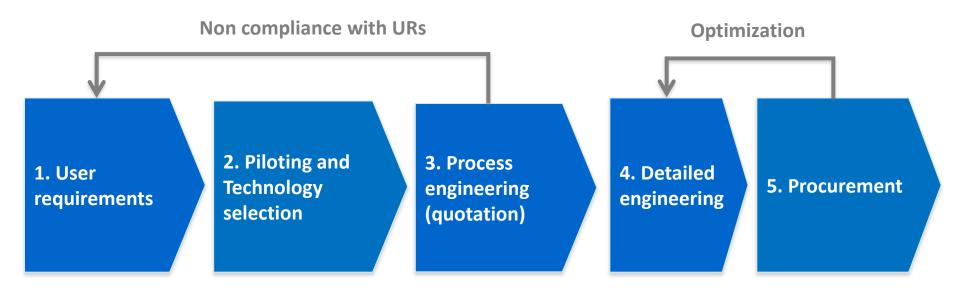

Type of paper	TSS	BOD5
Packaging board	22-30	9-18
Corrugated	22-30	11-26
Newsprint	9-26	4-9
Printing & writing	22-45	9-22
Tissue	13-45	4-13

Dairy industry

Wastewater sources

- □ Cleaning water: equipments, line purging at product change-over
- Product loss during start-ups, shut-downs, accidental spills
- **Losses of condensates during production of milk whey or dried whey**

Volume of effluent VS type of product



Typical contaminant charges (kg/tonne of product)

Type of product	BOD5	
Whole milk	104,000	
Skimmed milk	67,000	
Whey	34,000	
Yoghurt	91,000	
lce-cream	292,000	

Do not rush to define a solution!!

Engineering design is an iterative process with some key stages

First stages are the critical ones

1. User
requirements

- Waste water quality, components, variations, volumes, etc.. Good identification of contaminants and scenarios. REUSE POTENTIAL?
- Type of user: advanced, medium, low skilled in automation and complex technologies
- Working shifts: 1, 2, 3, 5? Continuous or with weekend stop?
- Cost preferences: Are they focused on optimize investment or operating costs? Highly automated or mostly manual?
- Future production and expansion
- Space available for foot-print and operation (sludge management)

First stages are the critical ones

2. Piloting and
technology
selection

- COD, BOD5 and TS are just a small part of what problems you may find when treating industrial waste water. So LAB TRIALS OR PILOTING SHOULD BE A MUST!!
- Do not commit to a single technology in your first approach. Compare different alternatives even if there is a strong candidate
- No magic solutions. Thermodynamics and other laws of nature are waiting you round the corner
- Technology are sold on their first day yields. Have a long run vision when selection and dimensioning
- An advanced technology well operated is almost always the best alternative

Process is the key for success

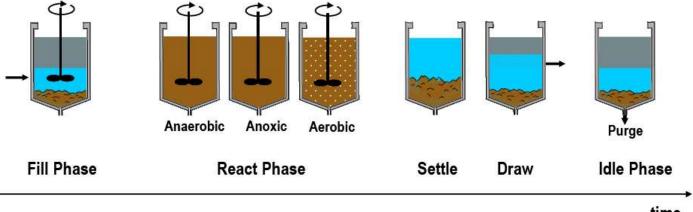
3. Process
engineering
(quotation)

- Focus on the process and performance. The dimension of your key equipment and reactors are the critical design issues and take a big part of the cost. Focus on that.
- Do not be greedy and too optimistic, and design with a long run vision.
- Based on a clear strategy define soon your electricalautomation design and ask for professional quotations.
 Big surprises
- Interfaces and service provision (electricity, tap water..) are very important and many times a difficult issue to solve. The sooner the better
- GET THE OWNER INVOLVED!!!!

Process is the key for success

4. Detailed engineering

- Start with interfaces and services. It takes many actors to agree on that so takes long to decide on a shared solution.
- Prepare and specific annex of interferences with the existing site and its normal operation. Industrial plants are not "green field" projects and are integrated in existing facilities with intense activity.
- Keep and eye of what technologies and providers the industry has and put that on your priority list. Do not try to change the way the work or import alien solutions.
- Be aware of the skills of the construction team to define your level of detail.


First stages are the critical ones

5. Procurement

- No magic providers. Good technologies and equipment and a right price come together.
- The human resource cost of low quality components rapidly overtakes the possible savings in procurement
- Industry existing providers are always the best choice. If they are below your technology needs go back to point 4.
- Delivery dates are always too optimistic. They are provided by a sales person

SBR (Sequencing batch reactor)

- Systems based on activated sludge, operated on a sequence of fill-draw cycles.
- Main difference compared to conventional activated sludge systems: reaction and settling take place in the same reactor.

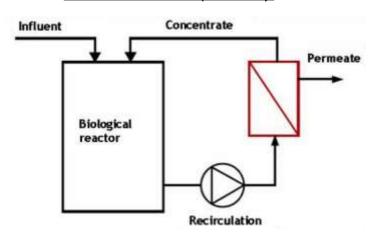
Benefits and advantages

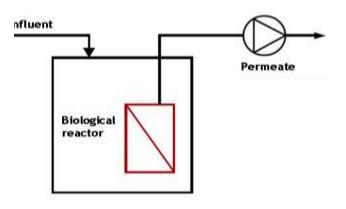
time

- **Capable of handling wide swings in hydraulic and organic loads**
- **Less land required than conventional methods**
- Less equipment to maintain/less operator attention required/highly automated
- Powdered activated carbon can be added

SBR (Sequencing batch reactor)

Can be used for a wide variety of applications where the wastewater is biologically degradable:


- Food, beverage and confectionery
- Paper, board and textile
- Wineries and breweries
- Petrochemical, refinery and paint

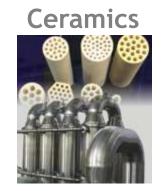

- Anaerobically pre-treated effluents
- Electronics and manufacturing
- Pharmaceutical, perfume and personal care

Removal efficiencies of this technology by industry

Type of effluent	BOD (%)	COD (%)	TKN (%)	TP (%)	TSS (%)	TS (%)
Winery wastewaters	97.5	93-96	50	88	n.a.	n.a.
Dairy wastewater	97	93	n.a.	n.a.	97	76
Slaughterhouse wastewaters	n.a.	95	92	90	94	n.a.
Piggery wastewaters	94.5	88.7	n.a.	61	93.4	n.a.

It is based on a combination of conventional activated sludge system with membranes of micro or ultrafiltration to retain biomass. Configurations: Sidestream (sMBR)

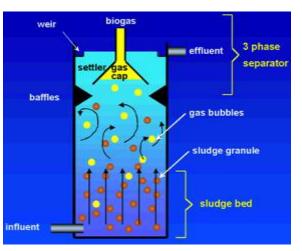
Benefits and advantages


- Compactness and small layout size of the plant
- □ High load effluents/low retention times required
- Highly automated
- Constant effluent quality, regardless of the influent
- No risk of biomass loss

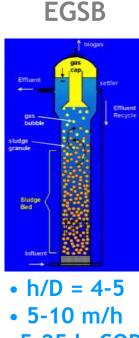
MBR (Membrane bioreactor)

Membrane modules compatibility

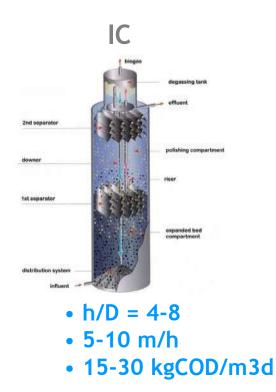
Flat-sheet


- It effectively produces a clarified (free of SS) and substantially disinfected effluent that can be reclaimed within the specific industry:
 - Food, beverage and confectionery
 - Paper, board and textile
 - Wineries and breweries

- Anaerobically pre-treated effluents
- Electronics and manufacturing
- Pharmaceutical, perfume and personal care
- Reclaimed water applications: cooling, cleaning or within the process (i.e. dilutions). Previously, it must be checked if water quality meets with the standards for the specific use.


In anaerobic systems many different groups of anaerobic bacteria "work" together, in the absence of oxygen, to degrade most of the biodegradable organic matter present in wastewater to biogas, CH4 and CO2, mainly.

Anaerobic configurations:

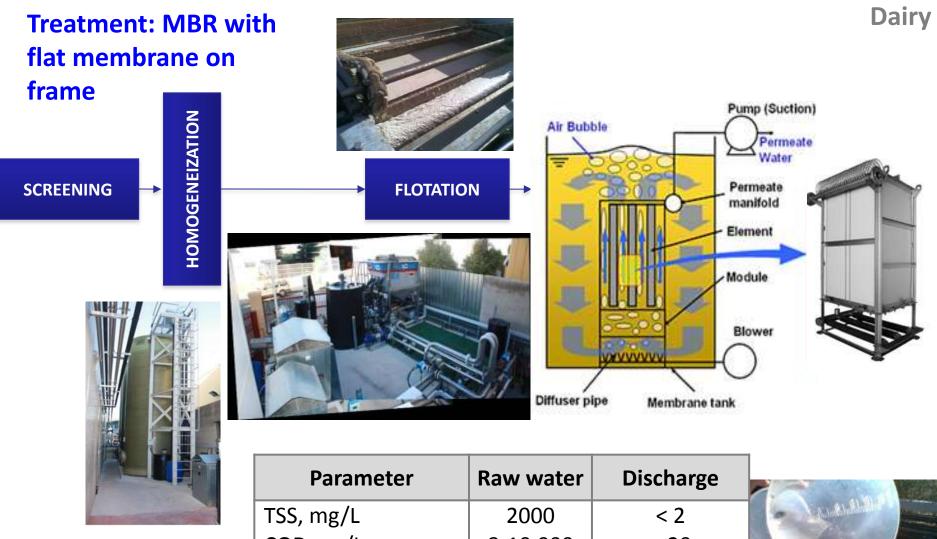

UASB

- •Low h/D
- 0.5-1.5 m/h
- 4-15 kg COD/m3d

Industries with highly organic loaded effluents (agricultural, pulp and paper, food, dairy, beverage, etc.) are the best candidates for this technology.

Removal efficiencies of this technology by industry

Type of effluent	COD (%)	m3CH4/kg COD	
Potato processing	78-92	n.a.	
Confectionery	92.4	n.a.	
Sugar	> 90	0.355	
Slaughterhouse	80	n.a.	
Pulp and paper	80	0.34	
Winery	90-95	0.4-0.6	



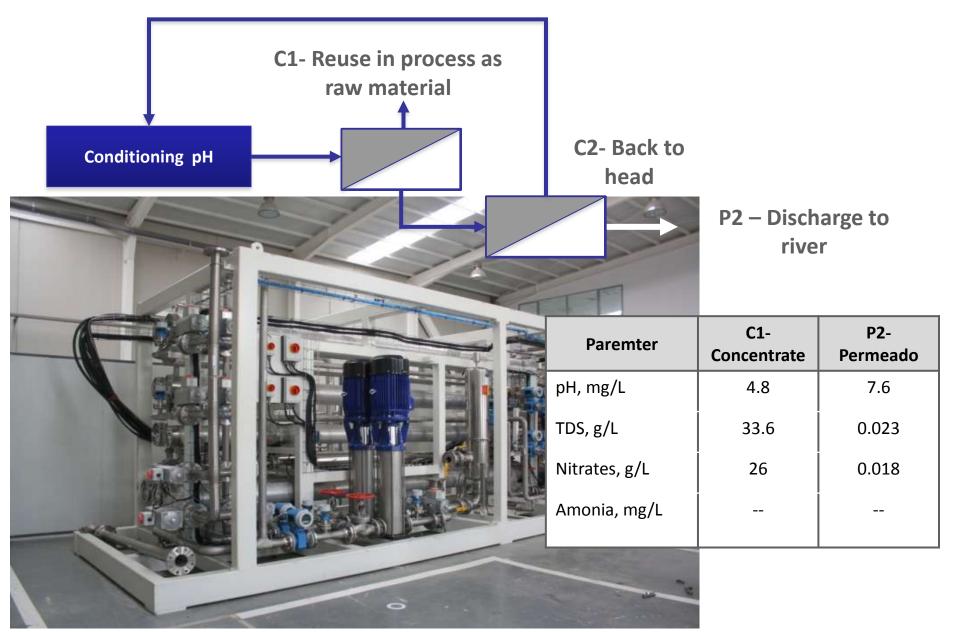
Industry: Location: Volume: Calidad del agua: Dairy Murcia Region 80-120 m³ per day

Parameter	Raw water	Discharge limit
TSS, mg/L	2000	< 500
COD mg/L	8-10.000	< 1000
BOD ₅ , mg/L	5-6.000	< 400
Conductivity mS/cm	4.5	< 5.0
NKT, mg/L	126	<50 (como NT)
Total P, mg/L	43.5	-

Dairy

Requirements: Minimal foot print with HRT < 1,2 días. High variability in volume and charge. The plant has to work with the existing maintenance and operation personnel.

Falameter	naw water	Discharge	1
TSS, mg/L	2000	< 2	
COD mg/L	8-10.000	< 20	
BOD ₅ , mg/L	5-6.000	< 5	
Conductivity mS/cm	4.5	< 5,5	
NKT, mg/L	126	<2	
Total P, mg/L	43.5	<1	


Industry:	Ammonium Nitrate production factory
Localition:	France
Volume:	600 m ³ /day

Requirements: High percentage of elimination of nitrate for river discharge. Explosive environment. High variability of volume and pH. Very aggresive environment in-doors and extreme weather conditions outdoors

Water quality:			
Parameter	Raw water	Discharge	
рН	9	6,5-8,5	
Conductivity mS/cm	3,6	<-	
Nitrates, mg/L	3000	<25	
Amonia, mg/L	250	<1	
			and the second second second

Nitrochemical

Treatment: Double pH control and reverse osmosis with doble step

Thank youMerci pourfor your attentionvotre attention

مع خالص شكري وامتناني

For additional information please contact: Sustainable Water Integrated Management - Support Mechanism: <u>info@swim-sm.eu</u> Website: <u>www.swim-sm.eu</u>