

Water Globe Consulting

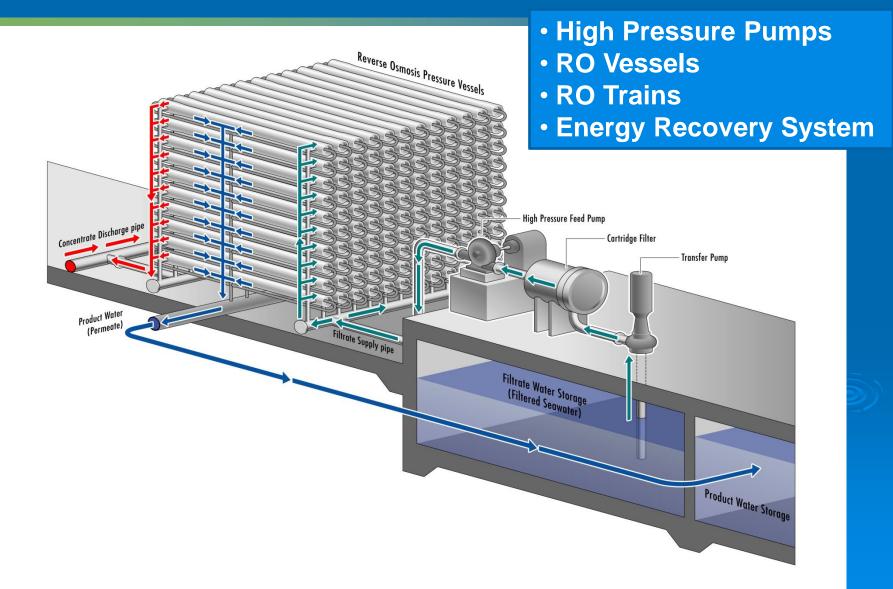
THE MIDDLE EAST DESALINATION RESEARCH CENTER

Cost Estimating of SWRO Desalination Plants

Day 1: Plant Cost Fundamentals

June 25, 2013

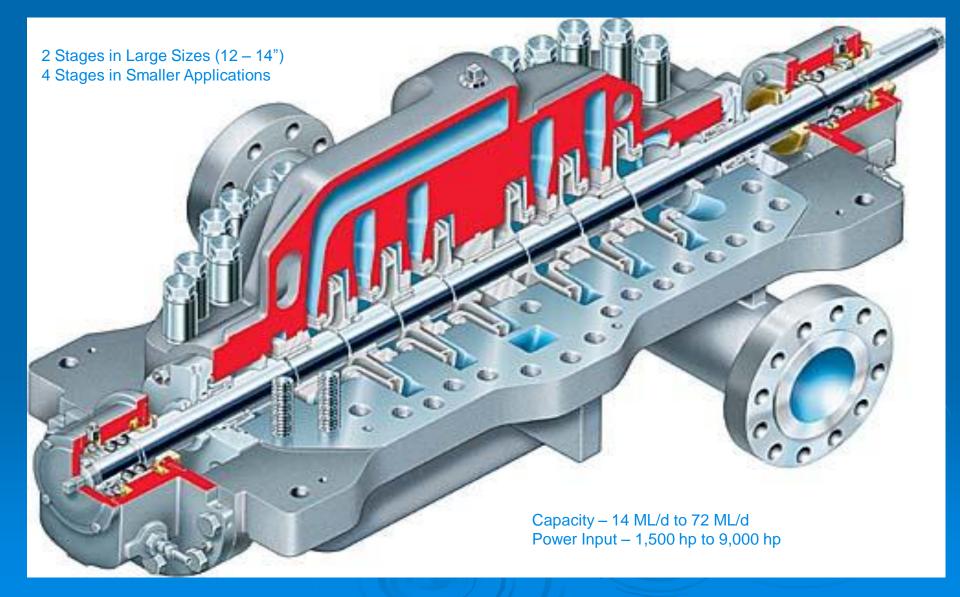
14:45-15:45


1.4 RO System Construction Costs

Nikolay Voutchkov, PE, BCEE

RO System Construction Costs - Outline

- Key SWRO System Components
- > High Pressure Pump Costs
- Costs of Membrane Racks
- Energy Recovery System Costs


Key RO System Components

Types of SWRO Feed Pumps

- Reciprocating (Positive Displacement/Piston) Pumps;
 - Applications Typically Limited to 1.0 MGD;
 - 90 % to 95 % Efficiency;
 - Flat Pump Curve Efficiency and Flow Constant at Changing Membrane Pressures.
- Centrifugal Pumps:
 - Available in All Sizes;
 - 82 to 88 % Efficiency;
 - Pump Efficiency Varies with Changing Membrane Pressure.

Horizontally Split-Case Pumps

Ashkelon - Largest Horizontally-Split High Pressure Pumps In Use Today

- Two Sets of 3+1 Two-stage Horizontal Split-case Pumps – 60 ML/d each
- Pump Motors 5.2 MW
- 5-year Pump Efficiency Guarantee
- All Wet Parts Made of Duplex Stainless Steel
- <u>Gold Coast</u> Similar Configuration (3+1/4.8 MW)

Radially Split Case Pumps

- Occupy Less Space;
- Easier to Maintain;
- Less Vibrations;
- Only One Mechanical Seal on the Drive End (Horizontally Split Case Pumps Have2 seals);
- Internal Fiber-Composite Bearings (Water Lubricated) – vs. External Grease Lubricated;
- Largest Pumps First Installed for Expansion of Dhekelia SWRO Plant (Cyprus) to 50 ML/d;
- Onit Capacity 25 ML/d (2,800 hp) 87 % Efficiency.

Segmental-Ring Pumps

Individual Pump Stages Located Between Pump Suction and Discharge Casings.

- Impellers Mounted on Common Shaft.
- Smaller Diameter;
- Lighter Construction;
- Lower Cost.

Maximizing Pump Efficiency – Bigger Pumps Rule!

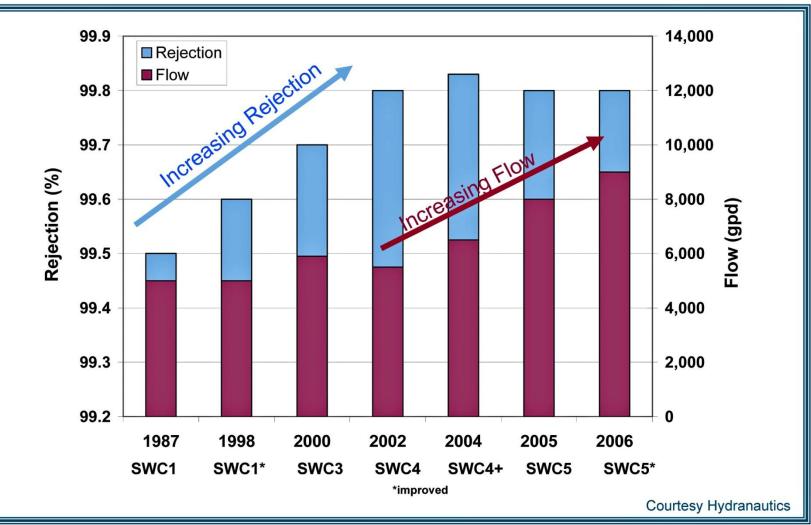
> Pump Efficiency ~ n x $(Q/H)^{0.5}$ x $(1/H)^{0.25}$

Where:

n = pump speed (min $^{-1}$); Q = nominal pump capacity (m³/s); H = pump head (m).

<u>Pump Efficiency</u>: One Pump Per Train – 83 %; One Pump Per 2 Trains – 85 %; Three Pumps Per 16 Trains – 88 %. Perth – One Pump per 2 RO Trains

RO Trains


RO Trains – Alternative Configurations

Key SWRO System Components

- Membrane Elements:
 - Diameter 4" to 16" (8" most widely used);
 - Length 40-in (60-in also available).
- Membrane Vessels:
 - Fiberglass Reinforced Plastic;
 - 6 to 8 Membranes per Vessel;
 - Installed on Welded Steel or FRP Support Racks.
- Membrane Process Trains:
 - Membrane Vessels Connected with Ports to Feed, Concentrate and Product Water Lines.

SWRO Membrane Elements – Technology Evolution

0

Large SWRO Membrane Elements

16" RO Membrane Element

Potential Disadvantages

- Loading Requires Special Equipment and Extra Space;
- Special Costlier Vessels & End Caps Needed;
- More Costly Foundations and Structure May Be Needed
- Membranes Costlier to Manufacture.

Large Size RO Membranes – Advantages

- Potential Space Savings 10 to 15 %.
 - Capital Cost Savings 5 to 10 %.
- Total Cost of Water Savings 4 to 6 %

Standard 8" RO Membrane Element

Large Size SWRO Elements -Productivity

Typical Production Capacity of One Large RO Vessel			
Membrane	Typical Number	Product Water Capacity per Vessel (MGD)	
Manufacturer/	of Elements per		
Membrane Element	Vessel	BWRO & Water	SWRO
Size		Reuse	
Dow/Filmtec	7	0.28-0.30	0.22
16-in x 40-in			
Hydranautics	4	0.12-0.15	0.10-0.14
16-in x 40-in			
Toray	7	0.28	0.19-0.21
16-in x 40-in			
Woongjin Chemical	4	0.15	0.10-0.15
16-in x 40-in			
KMS – MegaMagnum	5	0.33-0.43	0.26-0.35
18-in x 61-in			
KMS – <u>MegaMagnum</u>	5	0.40-0.50	0.30-0.40
Plus – 19-in x 61-in			
Note: 1 MGD = 3,785 m ³ /day			

Projects with Large RO Elements

	Location	Project Name	Capacity (MLD)	Start-Up Date
	USA, Yuma, Ariz.	Metropolitan Water District of Southern California, BWRO demonstration	1.9	2005
	Australia	Industrial Maltery, water reuse	1.5	April 2006
Koch Membrane Systems	USA, Goodyear, Ariz.	City of Goodyear, Ariz., BWRO	1.9	May 2007
	Australia	Bundamba AWT Plant, Stage 1A, water reuse	29.9	Aug. 2007
ane	USA, Waupun, Wisc.	City of Waupun, Wisc. (ULP)	7.6	Dec. 2007
Membr	Australia	Bundamba AWT Plant, Stage 1B, water reuse	36.0	April 2008
Koch	USA, Moscow, Ohio	Tate–Monroe Water Association, US52 WTP Project, TFCS Softening	7.6	3rd Quarter 2008
	Ukraine	Alchevsk Steel Mill, wastewater treatment	15.1	4th Quarter 2008
	Canary Islands	Hotel—SWRO Demonstration	N/A	N/A
ics	Singapore	PUB: Bedok NEWater, water reuse ESPA BWRO (GrahamTek) pilot	N/A	Aug. 2006
	Singapore	PUB: Bedok NEWater, water reuse ESPA2 BWRO (GrahamTek)	54.9 (~39.4 Phase 1 and ~15.5 Phase 2)	Phase 1: May 2008 Phase 2: Dec. 2008
nau	UAE, Layyah	SWC3 SWR0 Pilot (GrahamTek)	1.0	April 2007
Hydranautics	Canary Islands SWC5 SWR0 Pilot (GrahamTek)		N/A	Oct. 2007
£.	Singapore, PowerSeraya	SWC3 Seawater R0 (GrahamTek)	10.0	Jan. 2008
	Saudi Arabia	SWRO Pilot	N/A	2009
	Spain	SWRO Pilot	N/A	2009
Toray	Singapore	Changi, water reuse (TML40-160) pilot	N/A	N/A
ē	Malta	Sabha III, SWRO demonstration	N/A	2009
mical	Singapore	PUB: Bedok NEWater , water reuse (RE16040) (GrahamTek) pilot	1.4	Oct. 2006
Woongjin Chemical	Singapore	PUB: Bedok NEWater, water reuse (RE16040-BLR) (GrahamTek)	29.9	May 2008
Woong	Australia	Yabulu, SWRO	6.0	2009
Dow	Singapore	PUB: Bedok NEWater, water reuse pilot	1.2	Sept. 2007
N/A	= Not available			

SWRO = Seawater RO

BWR0 = Brackish water RO


Horizontal vs. Vertical Pressure Vessel Configuration

- Horizontal Pressure Vessels Dominate SWRO Plant Configurations with 8-inch Elements:
 - Easier Manual Handling;
 - 1.5 Times Lower Height Buildings;
 - Lower Cost Foundations.
- Vertical Pressure Vessel Configuration – Found More Attractive for 16-inch Elements Where Manual Membrane Handling is Not Possible.
 - 1.5 Times Smaller Footprint;
 - 1.2 Times Less Super Duplex Piping & Fittings;
 - 15 % Lower Plant Construction Costs.

410 MLD Sorek SWRO Plant, Israel

Courtesy: IDE Technologies

Vertical 16-inch Vessels;

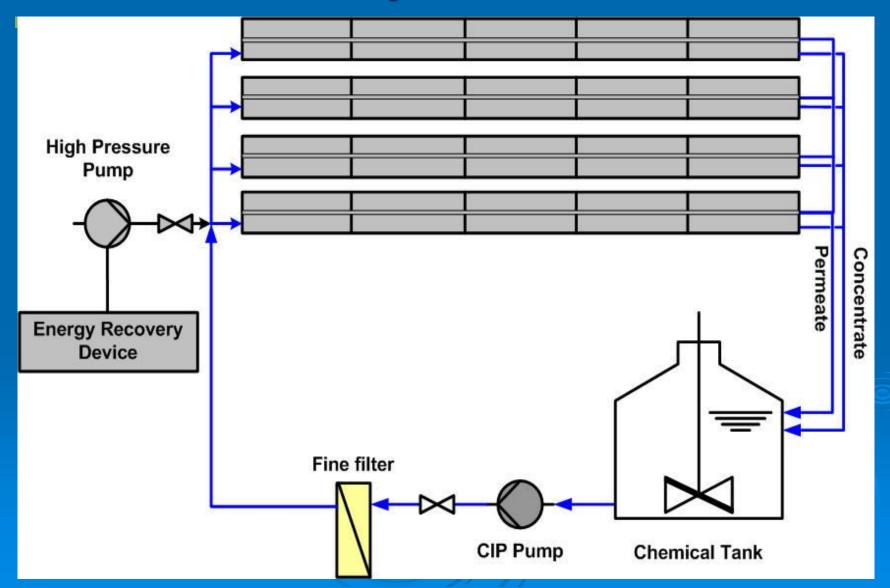
- 4.3 Times Larger Flow Rate than 8-inch Membranes;
- Scheduled for Operation in 2013;
- Record Low Water Price (US¢ 58.5/m³ - in \$2009)

Membrane Vessels

Key Manufacturers:

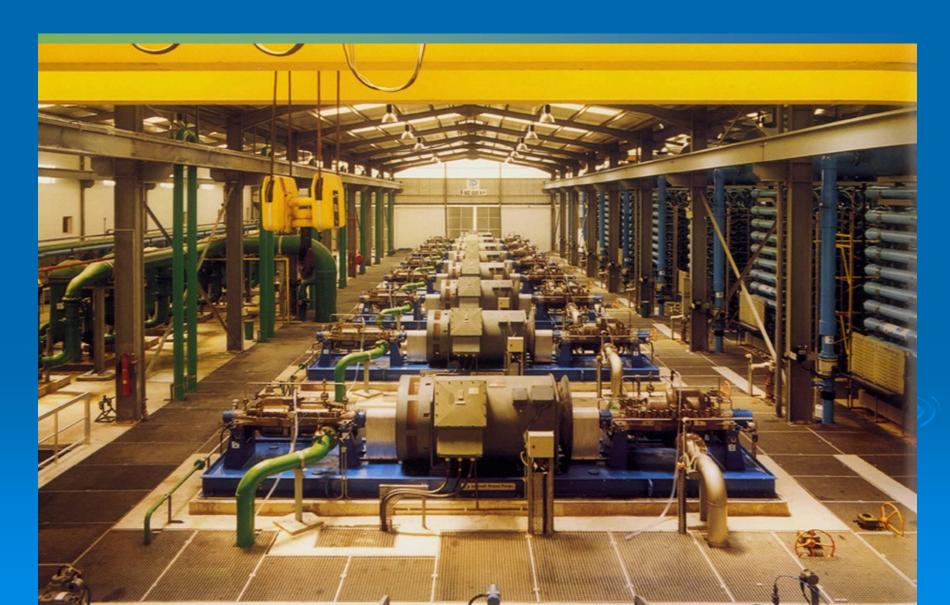
- Pentair (Codeline) <u>www.codeline.com</u>
- BEL Composite America, Inc. – <u>www.belvessels.com</u>
- Bekaert Progressive Composites, Corp. <u>www.bekaert.com</u>

Membrane Vessels – Multiple Ports



Membrane Vessels – Flow Distribution System

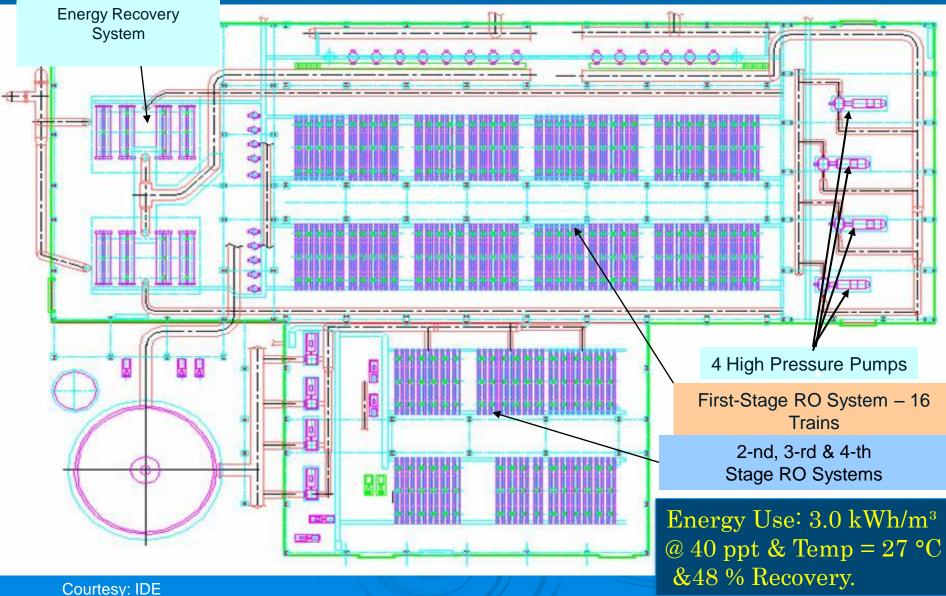
RO Membrane Cleaning System


RO Membrane Trains – Alternatives

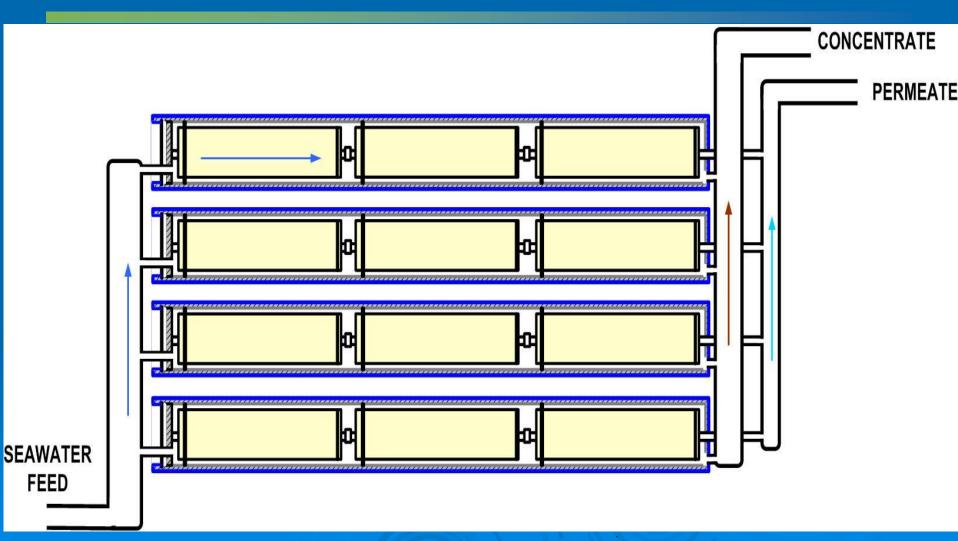
> One High Pressure Pump Per One RO Train

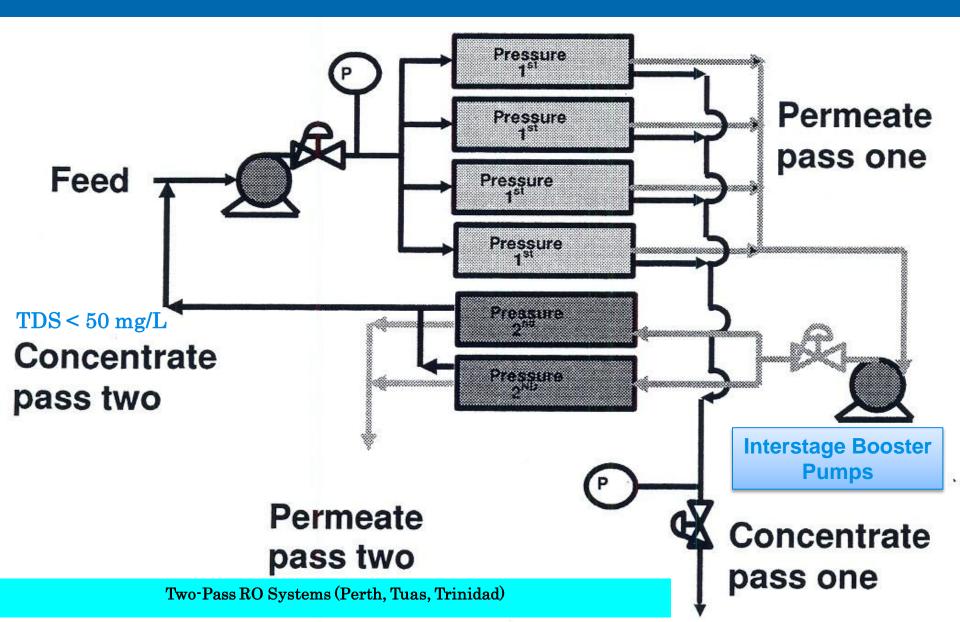
One High Pressure Pump per Two RO Trains

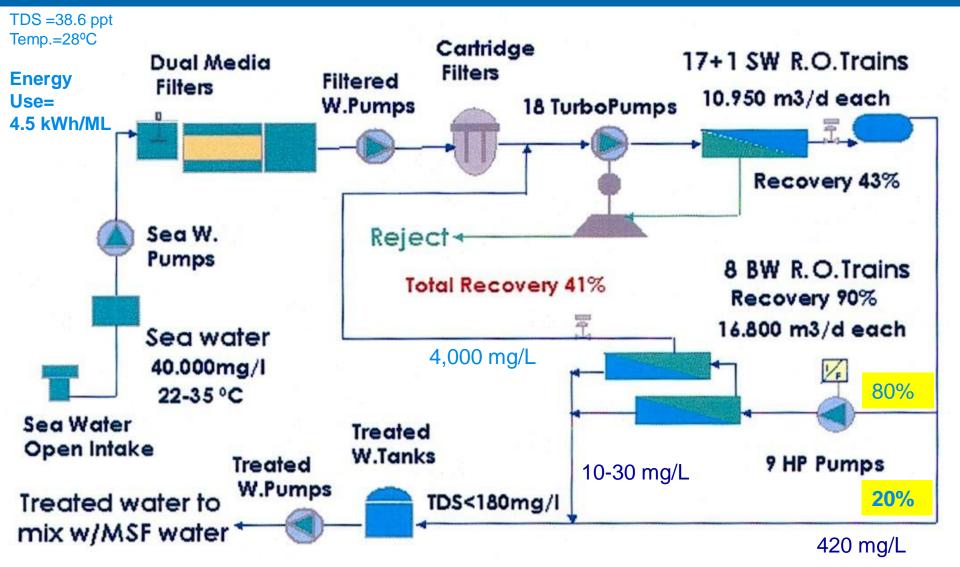
One High Pressure Pump Serving 50 % of the Trains


One HP Pump – One RO Train

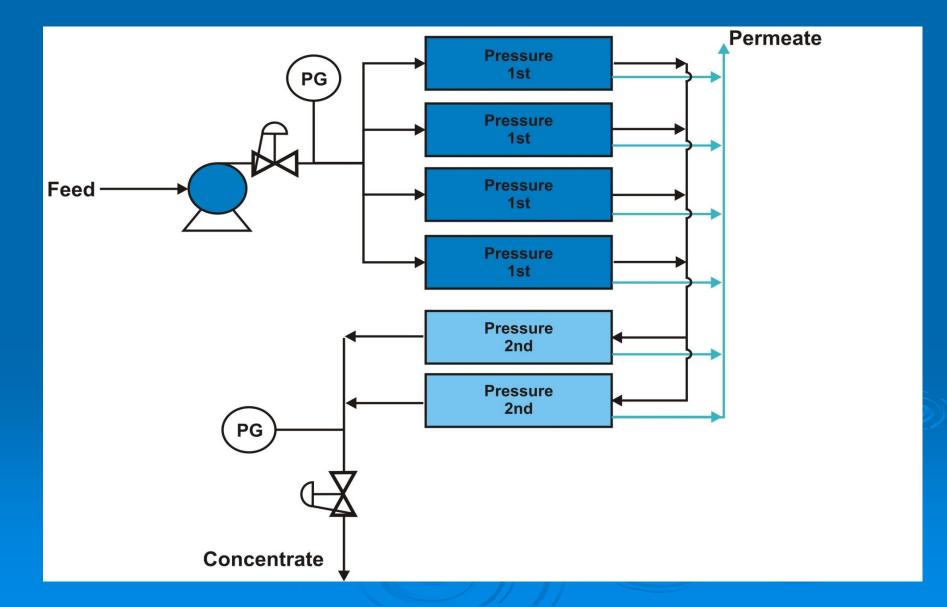
One HP Pump – Two RO Trains (Carboneras, Spain)


Three-Center RO System Configuration – 330 MLD Ashkelon SWRO Plant

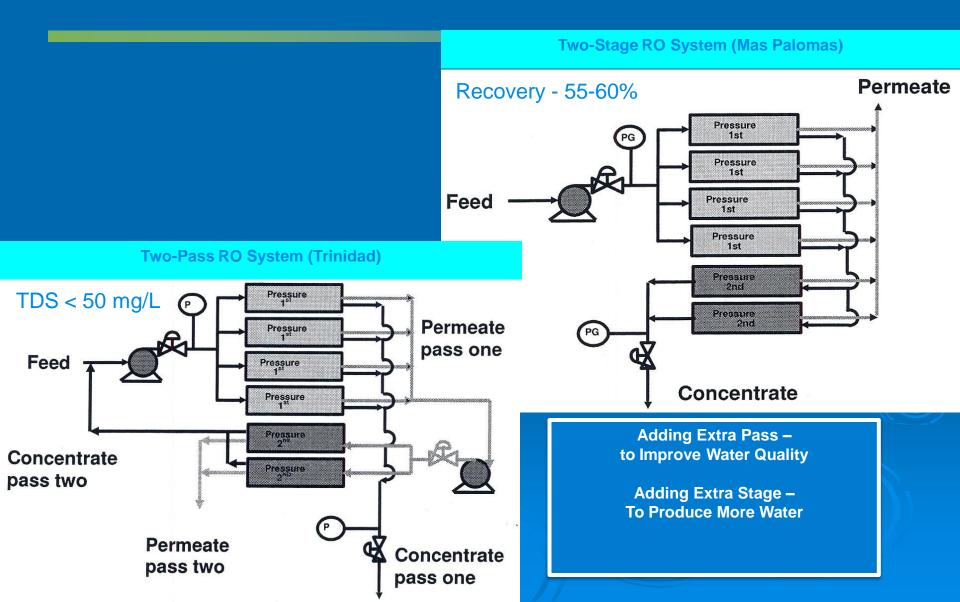

Alternative RO System Configurations

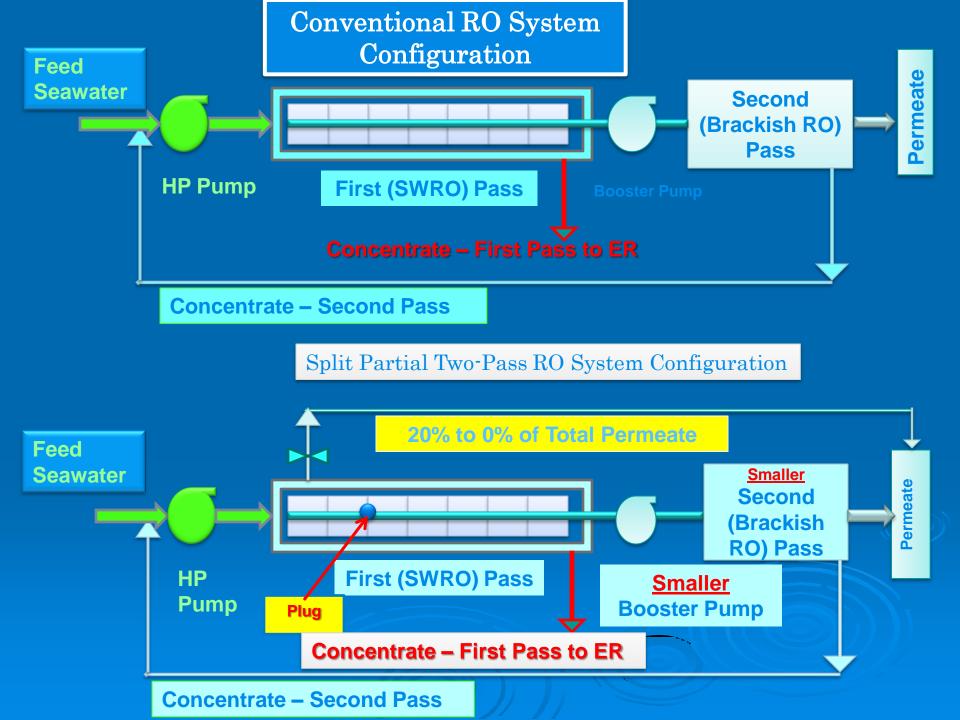

Single-Pass SWRO System

Two-Pass RO Systems



Partial Second Pass System (Fujiarah SWRO Plant)




Source: Degremont

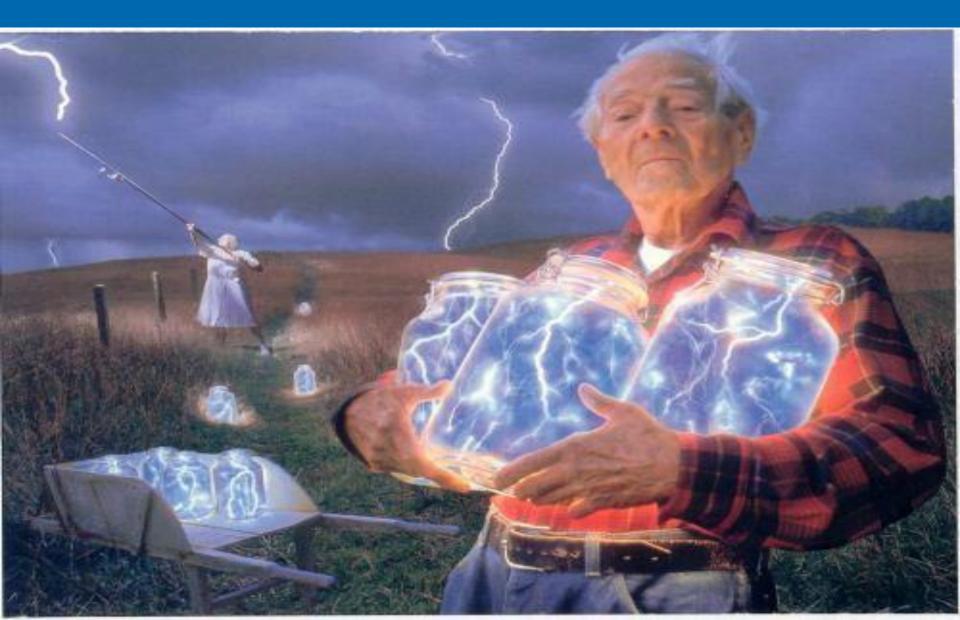
Two-Stage RO Systems

Two-Pass vs. Two-Stage RO Systems

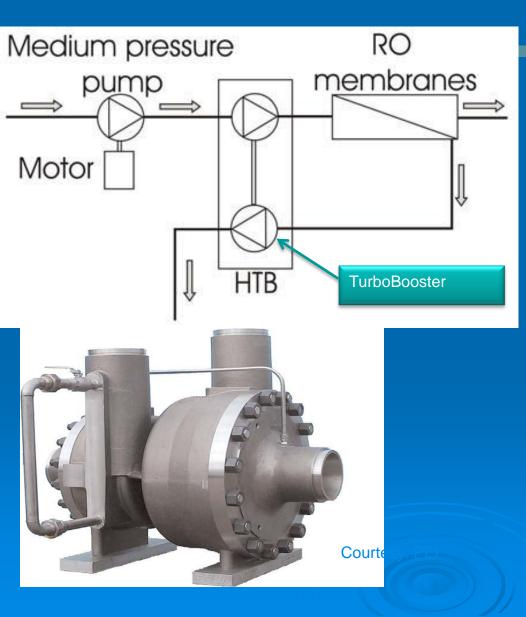
Product Water from Mediterranean Sea

Reverse Osmosis Permeate Water Quality			
Seawater Source – Mediterranean Sea			
Water Quality	Mediterranean	Permeate Water Quality	
Parameter	Source Seawater	Single Pass SWRO	Split Partial Two
	Quality	System	Pass RO System
Temperature, ⁰ C	16-28	17-29	18-30
рН	8.1	6.3-7.2	7.9-8.1
Ca ²⁺ , mg/L	480	1.0-2.0	0.35-0.45
Mg ²⁺ , mg/L	1,558	1.9-2.8	0.5-1.0
Na⁺, mg/L	12,200	98-196	15-34
K⁺, mg/L	480	3.0-5.5	0.8-1.8
CO32-, mg/L	5.6	0.0	0.0
HCO ₃ -, mg/L	160	1.7-2.4	0.5-0.8
SO₄²-, mg/L	3,190	2.9-6.3	1.4-2.95
Cl-, mg/L	22,340	169-260	25-52
F∙, mg/L	1.4	0.7-1.1	0.5-0.8
NO ₃ -, mg/L	0.00	0.00	0.00
B-, mg/L	5.0	0.9-1.5	0.4-0.6
Br-, mg/L	80	0.9-1.3	0.35-0.6
TDS, mg/L	40,500	280-480	45-95

Product Water from Arabian Gulf


Reverse Osmosis Permeate Water Quality			
Seawater Source – Arabian Gulf			
Water Quality	Persian Gulf	Permeate Water Quality	
Parameter	Source Seawater	Single Pass SWRO	Split Partial Two
	Quality	System	Pass RO System
Temperature,ºC	18-35	19-36	20-37
рН	6.0 – 7.0	5.1-6.0	5.1-6.0
Ca ²⁺ , mg/L	570	1.4-2.6	0.6-0.8
Mg ²⁺ , mg/L	1,600	2.0-3.6	0.9-1.3
Na⁺, mg/L	14,100	142-228	25-45
K⁺, mg/L	530	4.3-6.8	1.5-2.2
CO32-, mg/L	4.2	0.0	0.0
HCO ₃ -, mg/L	155	1.8-2.3	0.6-0.9
SO₄²-, mg/L	3,300	3.1-6.5	2.1-3.2
Cŀ, mg/L	24,650	222-305	37.5-64
F-, mg/L	1.5	0.9-1.2	0.5-0.8
NO ₃ -, mg/L	0.00	0.00	0.00
B-, mg/L	6.3	1.3-2.5	0.7-1.0
Br-, mg/L	83	1.2-1.5	0.60-0.80
TDS, mg/L	45,000	380-520	70-120

Product Water from the Red Sea


Reverse Osmosis Permeate Water Quality Seawater Source – Red Sea			
Water Quality	Red Sea Permeate Water Quality		
Parameter	Source Seawater	Single Pass SWRO	Split Partial Two
	Quality	System	Pass RO System
Temperature,ºC	22-33	23-34	24-35
рН	7.0-8.0	6.8-7.8	7.6-8.0
Ca ²⁺ , mg/L	500	1.1-2.1	0.5-0.7
Mg ²⁺ , mg/L	1,540	1.8-3.4	0.7-1.0
Na⁺, mg/L	13,300	142-220	20-38
K⁺, mg/L	489	3.2-6.5	1.2-1.8
CO32-, mg/L	2.4	0.0	0.0
HCO ₃ -, mg/L	142.4	1.4-2.0	0.5-1.0
SO₄²-, mg/L	3,100	2.8-6.2	1.9-2.6
Cl-, mg/L	22,840	195-276	29-58
F-, mg/L	0.9	0.5-0.7	0.3-0.5
NO₃⁻, mg/L	0.00	0.00	0.00
B-, mg/L	5.3	1.2-1.7	0.45-0.80
Br-, mg/L	80	1.0-1.4	0.45-0.60
TDS, mg/L	42,000	350-520	55-105

 $\overline{\mathbf{O}}$

Energy Recovery Systems

Hydraulic Turbocharger

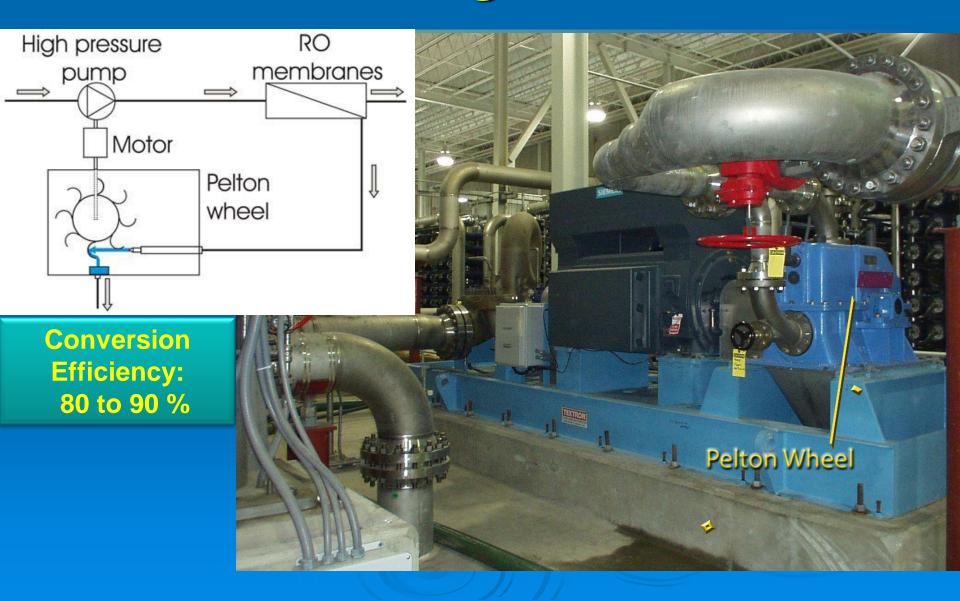
Turbocharger Popular for Small and Medium Size Plants (20 to 40 % pressure boost).

 Available for Low & High Pressures.

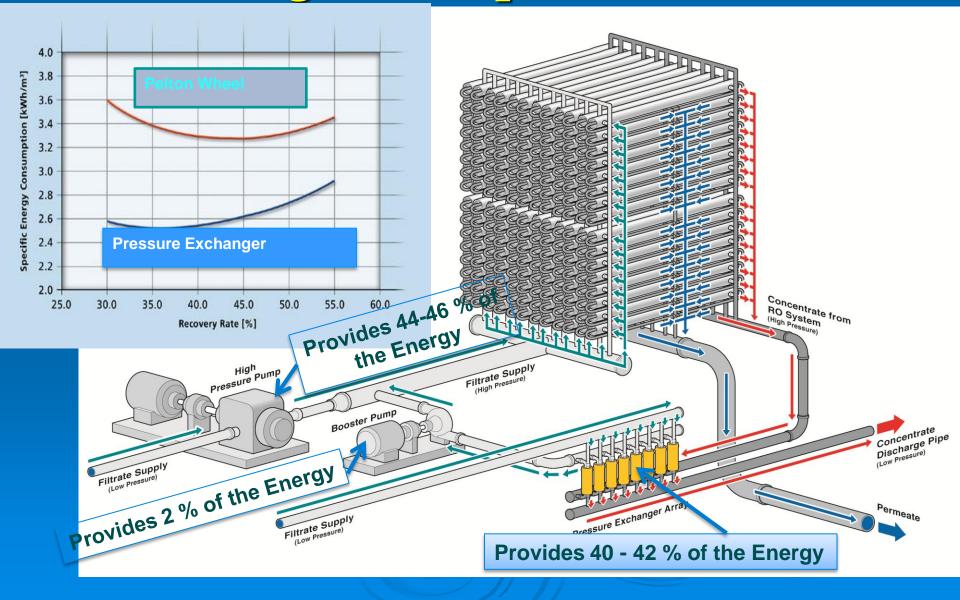
- Used for High-Recovery (Brine Conversion) Systems to Achieve 60 – 65 %.
- Low Maintenance & Brine Leakage Into Feed Stream.
- Lower Cost and Space Requirements than Other Energy Recovery Systems.

Hydraulic Turbocharger – Large Installations (2.35 to 2.65 kWh/m³)

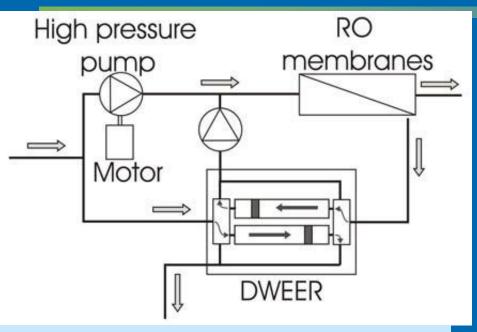
Pump Efficiency ~ n x (Q/H)^{0.5}x (1/H)^{0.25}


114 ML/d Plant in Jebel Ali, UAE

- 9 RO Trains;
- 16 Single-stage HP RO Pumps;
- Up to 525 psi (40 bars) of Boost;
- HP RO Pumps Operating @ Full Flow @ ½ Pressure –
 5-7 % Extra Efficiency.

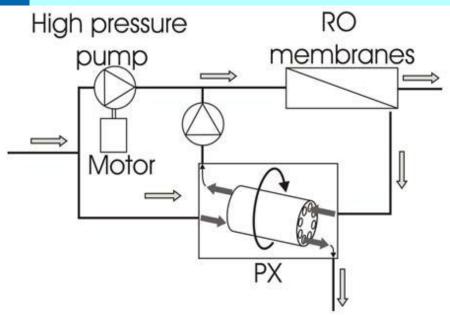

35 ML/d Plant in Thailand (PT Chemicals) – 2.6 kWh/m³.

> 145 ML/d NEWater Ulu Pandan Plant, Singapore

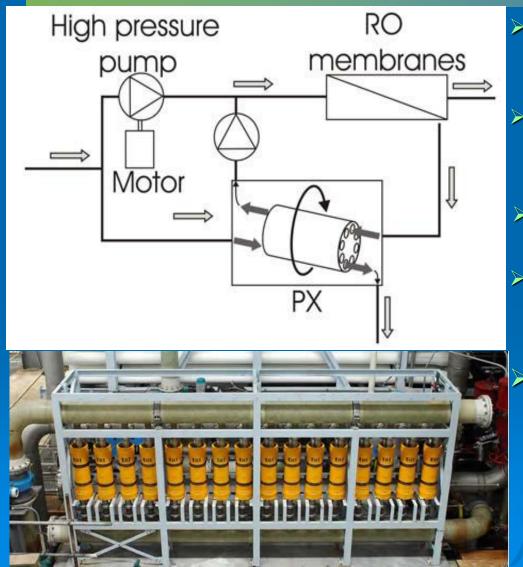

Pelton Wheels – Majority of Existing Plants

Pressure Exchangers Allow the Use of Larger Pumps/RO Trains

DWEER and ERI Pressure Exchangers



DWEER Exchanger


- Positive Displacement Pistons Instead of Rotor;
- LinX Valves Cause the Two Vessels to Exchange Functions before The Piston Completes Stroke.

ERI PX Pressure Exchanger

- 96% Energy Conversion Eff.
- Smaller Footprint;
- One Moving Part Shaftless Rotor;
- Rotor Hydrostatically Suspended in Ceramic Sleeve.

ERI System – Current Status

- Largest In Operation Hamma (Algeria) – 190 ML/d;
- Largest in Construction –
 Hadera (Israel) 275 ML/d;
- Base Unit PX 220;
 (1.4 ML/d) in ops since 2002;
 10 to 16 Units per RO Train (9.5 – 15 ML/d RO Train).

Challenges:

- Mixing 5 to 7%;
- Efficiency Decreases w/ Increase in Plant Recovery.

DWEER System – Current Status

 Used in Ashkelon (330 ML/d), and Singapore (130 ML/d);

- 5 ML/d SWRO Train One DWEER System – Model 1100;
- Ashkelon 2 x 40 DWEER 2200 Systems;
- RO w/ DWEER 0.5 to 0.7 kWh/M3 Less Energy than Pelton Wheel @ (45 % Recovery).

DWEER – Recent Large Projects

Gold Coast, Australia – 133 ML/d
 Sydney, Australia – 125/250 ML/d
 Aguilas, Spain – 180 ML/d

Calder AG (Flowserve) – DWEER GA

25 % Higher Capacity Than DWEER 1100

FRP Instead of Steel Vessels

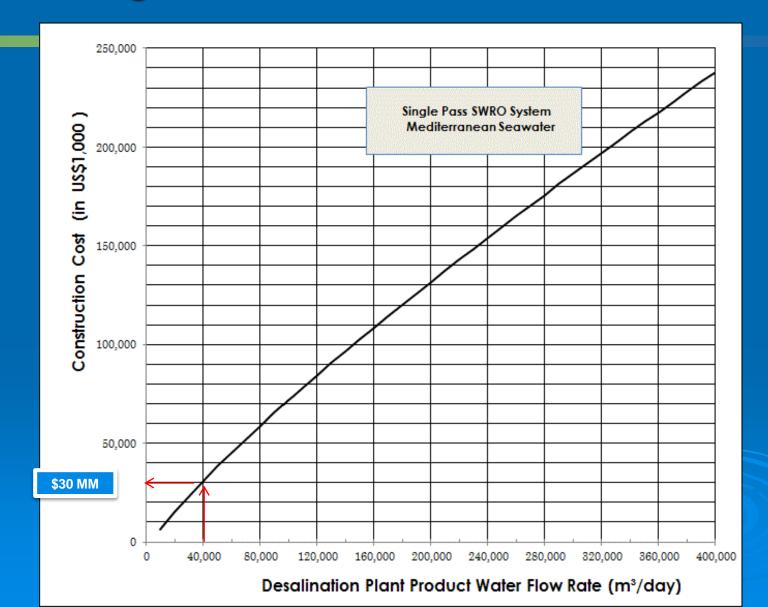
New LinX Valve With Two Seal Rings for Lowest Leakage

Specific Power Consumption Losses Reduced by 26 %

SWRO System Construction Costs

Dependent on Source Water Quality & Target Product Water Quality

Usually Between US\$300 and 1,000/m³/day


Single-stage/Single Pass SWRO System is Least Costly

Additional Costs for Two-Pass/Two-Stage RO System May Vary Between 15 and 30 % of the These of Single Pass/Single Stage SWRO System

Costs of Key RO System Components

Τ.	
Item	Construction Cost
	(US\$/item or as indicated)
8-inch Brackish RO Membrane Elements	US\$250 – US\$350/element
o inch Brackish KO Membrane Elements	$0.5\phi250 = 0.5\phi550/element$
8-inch SWRO Membrane Elements	US\$400 – US \$600/element
16-inch SWRO Membrane Elements	US\$2,800 - US\$3,300/element
10 Inch Switto Memorane Elements	$0.5\phi2,000 = 0.5\phi3,300/element$
Brackish RO Pressure Vessels for	US\$1,000 – US\$1,300/vessel
8-inch Elements	
SWRO Pressure Vessels for 8-inch Elements	US\$1,300 - US\$1,800/vessel
Swho Pressure Vessels for 6-Inch Elements	US\$1,500 - US\$1,600/vessel
SWRO Pressure Vessels for 16-inch Elements	US\$3,600 – US\$5,000/vessel
RO Train Piping	US\$250,000 - US\$750,000/RO
no mani mping	
	Train
RO Train Support Frame	US\$150,000 – US\$550,000/RO
	Train
RO Train Instrumentation and Controls	US\$30,000 - US\$150,000/RO
ivo rram montation and controls	
	Train
High Pressure Pumps	US\$150,000 - US\$2,400,000/RO
Ŭ Î	Train
	114111

RO System Construction Cost – Single Pass Mediterranean Water

Source Water Quality - Cost Impacts

Seawater Source	Unit Construction Costs	Unit O&M Costs	Unit Water Costs
Mediterranean	1.0	1.0	1.0
Gulf of Oman	1.09	1.07	1.08
Red Sea	1.12	1.10	1.11
Arabian Gulf	1.16	1.14	1.15

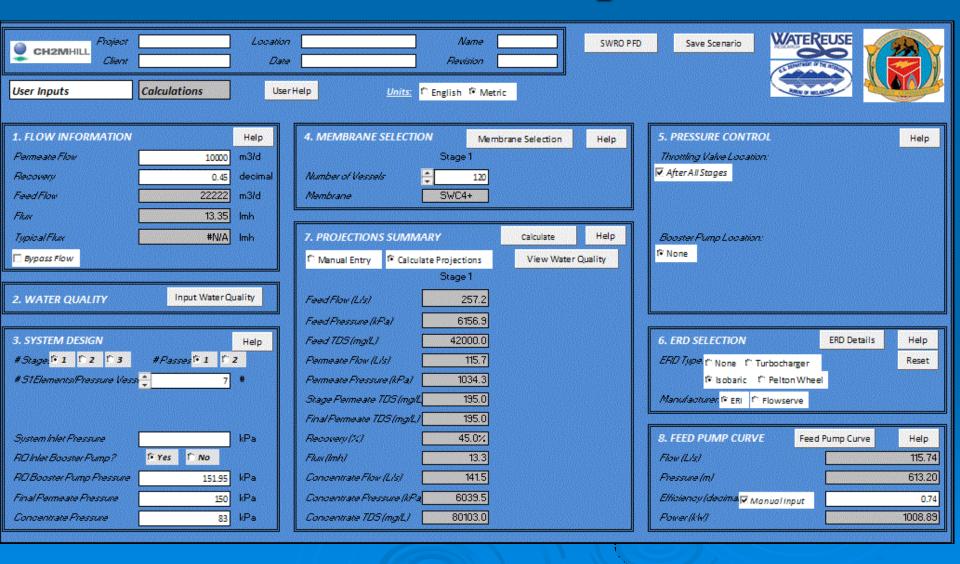
Effect of Product Water Quality on RO System Costs

Effect of Target Product Water Quality on Water Costs					
Target Product Water	Construction Costs	O&M Costs	Cost of Water		
Quality					
TDS = 500 mg/L					
Chloride = 250 mg/L					
Boron = 1 mg/L	1.00	1.00	1.00		
Bromide = 0.8 mg/L	Single Pass RO System				
TDS = 250 mg/L					
Chloride = 100 mg/L					
Boron = 0.75 mg/L	1.15 - 1.25	1.05 - 1.10	1.10 - 1.18		
Bromide = 0.5 mg/L					
	Partial S	econd Pass RO	System		
TDS = 100 mg/L					
Chloride = 50 mg/L					
Boron = 0.5 mg/L	1.27 - 1.38	1.18 - 1.25	1.23 - 1.32		
Bromide = 0.2 mg/L					
	Full Two-Pass RO System				
TDS = 30 mg/L					
Chloride = 10 mg/L					
Boron = 0.3 mg/L	1.40 - 1.55	1.32 - 1.45	1.36 – 1.50		
Bromide = 0.1 mg/L	Full Tw	o-Pass RO Syst	em + IX		
		<u>0 1 ass 110 Syst</u>			

Example of SWRO Cost Estimates for 40 MLD Plant

- Construction Cost of Single-Pass 40 MLD SWRO System using Mediterranean Seawater = US\$30 MM (see RO Cost Graph)
- Construction Cost of Single-Pass 40 MLD SWRO System using Arabian Gulf Seawater = US\$30 MM x 1.16 = US\$34.8 MM
- Construction Cost of Two-pass 40 MLD SWRO System Using Arabian Gulf Seawater = US\$34.8 x 1.3 = US\$45.24 MM

New Software for ERD Selection and Cost Estimating



Evaluation and Optimization of Emerging and Existing Energy Recovery Devices for Desalination and Wastewater Membrane Treatment Plants

WateReuse Research Foundation

Software Input

ERD Selection and Cost Estimate

		Energy Recovery Device	Help Sumn	nary Sheet
Device Information		System Information		
Select Device	O Dweer O PX	# of Devices per Train	8	#
Model	PX-300	Train Feed Flow	257.20	L/s
Manufacturer	Energy Recovery Inc.	Concentrate Flow	141.46	L/s
Application	SWRO	Isobaric Feed Flow per Device	17.54	L/s
Efficiency	96%	LP Concentrate Pressure	83	kPa
Max Working Pressure (kPa)	8274	HP Concentrate Pressure	6039.47	kPa
Min Flow (L/s)	12.62	System Feed Pressure	152	kPa
Max Flow (L/s)	18.93	Stage 1 Feed Pressure	6156.85	kPa
Salinity Leakage (%)	2.81%	Boosted Pressure	5798.37	kPa
Min Concentrate Pressure (kPa)	83	Circulation Pump Needed?	Yes	Y/N
Cost	\$ 35,000	Circulation Pump Pressure	358	kPa
Jser-Override Cost		Interstage Booster Pump Needed?	No	Y/N

Questions and Discussions