

Water Globe

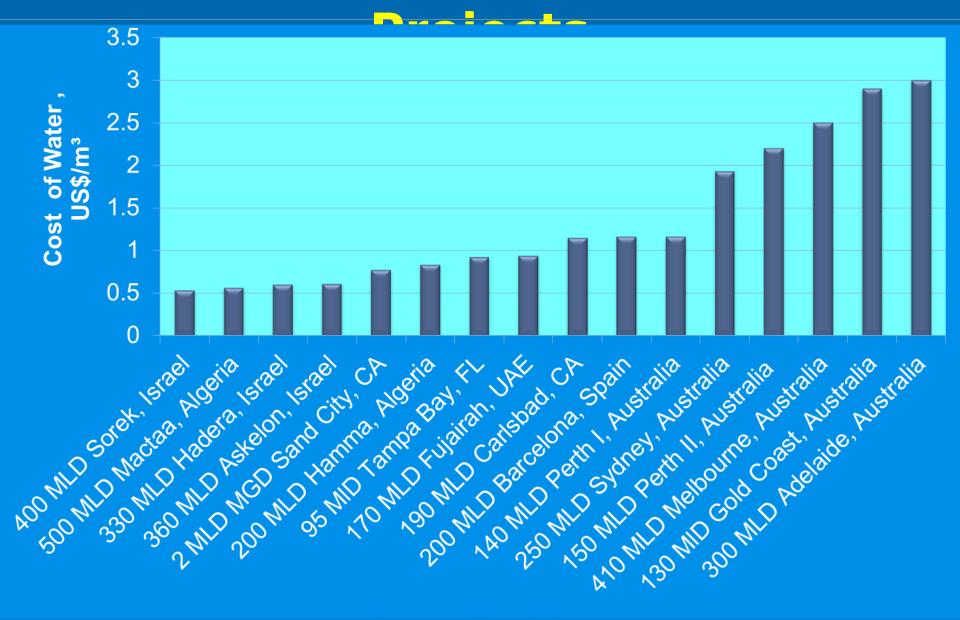
THE MIDDLE EAST DESALINATION RESEARCH CENTER

Cost Estimating of SWRO Desalination Plants

Day 3: Desalination Project Costs - Trends, Examples and Interactive Session

June 27, 2013

09:00-10:15


3.1 Desalination Cost Trends

Nikolay Voutchkov, PE, BCEE

- Desalination Cost Trends Outline

- Overview of Recent Projects and Their Cost Breakdown
- High-end Cost Projects Key Factors Contributing to Their High Costs
- Low-end Cost Projects Key Factors Resulting in Their Low Costs
- Impact of Project Delivery on Costs
 - Design-Bid-Build (DBB) Projects
 - Design-Build-Operate (DBO) Projects
 - Build-Own-Operate-Transfer (BOOT)
 Projects

Water Production Costs of Recent SWRO Desalination

Key Factors Affecting Costs

- Source Water Quality TDS, Temperature, Solids, Silt and Organics Content.
 - **Product Water Quality** TDS, Boron, Bromides, Disinfection Compatibility.
 - Concentrate Disposal Method;
 - Power Supply & Unit Power Costs;
 - Project Risk Profile;
 - Project Delivery Method & Financing;
 - ▲ Other Factors:
 - Intake and Discharge System Type;
 - Pretreatment & RO System Design;
 - Plant Capacity Availability Target.

Common Features of Low-Cost Desalination Projects

- ▲ Low Cost HDPE Open Intakes or Beach Wells;
- Near-Shore/On-Shore Discharges w/o Diffuser Systems or Co-discharge w/ Power Plant of WWTP Outfalls;
- Point of Product Water Delivery within 5 Miles of Desalination Plant Site;
- RO System Design w/ Feed of Multiple Trains by Common High Pressure Pumps and Energy Recovery Systems;
- Turnkey (BOOT, BOO) Method of Project Delivery.

Key Reasons for Cost Disparity Between High-End & Low-end Cost Projects

► **Desalination Site Location** (NIMBI vs. Science Driven)

- **Costly Plants Have Overly Long Product Water Delivery Pipelines**
 - 120 MGD Melbourne Plant Cost of Plant/Delivery + Power Supply Systems = US\$1.7 BB/1.1 BB (50 miles)
 - 66 MGD Sydney SWRO Plant Cost of Plant/Delivery System
 - = US\$560 MM/US\$490 MM (10 miles of underground tunnel under Botany Bay).

Environmental Considerations

Complex Intakes & Diffuser Systems

- Phasing Strategy
 - Intake and Discharge System Capacity;
 - Pretreatment & RO System Design;
- Labor Market Pressures

Method of Project Delivery & Risk Allocation

Project Delivery Alternatives

Design-Bid-Build (DBB):

- Key Benefit Utility Owns All Assets;
- Key Disadvantages Utility Takes All Risks and Reduces Borrowing Capacity.

Design-Build-Operate (DBO)/"Alliance":

- Key Benefit Utility Owns All Assets;
- Key Disadvantages Utility Shares Some Construction & Operations Risks and Reduces Borrowing Capacity.

Build-Own-Operate-Transfer (BOOT):

- Key Benefit Utility Transfers Most Risks to Private Sector and Only Pays for Water it Receives;
- Key Disadvantages Utility Does Not Own the Assets.

Risk Allocation Profiles for			
BOOT & Alliance (DBO)			
Type of Project Risk	BOOT	Alliance/DBO	
Permitting	Private	Public	
Source Water	Private	Shared	
Technology	Private	Shared	
Operations	Private	Shared	
Water Demand	Public (Take or Pay – Private Equity at Risk)	Public	
Power Supply	Private	Public	
Construction	Private	Shared	
Financial	Private	Public	

Worldwide the Lowest Cost of Desalinated Seawater Has Been Delivered Under BOO/BOOT Contracts!

Magtaa Project Bid Structure

MAGTAA PROJECT BID

Capacity	500,000 m³/day
EPC Value	approximately US\$500 mil
Offtakers	L'Algerienne Des Eaux (``ADE'')
Concession Period	25 years
Project Company	51% MenaSpring 49% Algeria Energy Company
Other Bidders (International Open Bidding)	Acciona Agua, Biwater/Tarco/Arcofina, GE Water/Orascom, Inima/aqualia, Befasa

Recent Lowest Cost SWRO Project Bids Worldwide

SWRO Plant	Cost of Water (US\$/m³)	Power Use (kWh/m³) & TDS
Sorek, Israel – 411 ML/d BOO (startup – 2014)	0.53	3.7 (40 ppt)
Mactaa, Algeria – 500 ML/d BOOT (startup – 2013)	0.56	3.7 (40 ppt)
Hadera, Israel – 330 ML/d BOO/co-located (startup – 2009)	0.60	3.7 (40 ppt)
Cap Djinet, Algeria – 100 ML/d BOO (startup – 2010)	0.72	4.0 (38 ppt)
Carlsbad, USA – 189 ML/d BOO co-located (startup – 2012)	0.74	2.9 (33.5 ppt)

What All Recent BOOT Projects Have in Common?

- All Yielded the Lowest Costs and Power Use of Desalinated Water in Their Respective Markets;
 - Plant Performance & Permitting Risks Reside with the Private Sector;
 - Debt Repayment is Private Sector Obligation;
 - Private Sector Only Gets Paid for Delivering Product Desalinated Water;
 - Public Utility Can Buy Out (Transfer) Project Ownership Once Plant Has Proven Its Long-term Performance.

Ashkelon - Lowest Cost of Water Worldwide - How Did

Ashkelon – Cost of Water Breakdown

Cost Item	NIS/m ³	USD/m ³ *	% of TWP	Linkage
Base Fixed Price	1.315	0.311	59.2	CPI
Base Variable Price				
Energy	0.565	0.134	25.4	electricity price**
Membranes	0.120	0.028	5.4	CPI & USD/NIS exchange rate
Filters	0.020	0.005	0.9	"
Chemicals	0.090	0.021	4.1	"
Post-treatment	0.040	0.009	1.8	**
Others	<u>0.070</u>	0.017	3.2	**
Subtotal	0.905	0.214	40.8	
Base Total Water	2.220	0.525	100.0	
Price (TWP)				

* At the relevant base exchange rate of 4.23 NIS/USD

** The "Required Revenue per KWH" as published by the Israel Public Utility Authority – Electricity

Source: Dreizin, 2004

Ashkelon - How Did They Do It?

- Low Cost Conventional Pretreatment Single Stage Dual Media Filters;
- Large Size (20-micron) Cartridge Filters;
- ▲ Three-Center RO Design w/ Pressure Exchangers:
- Low Cost Post-Treatment Calcite Filters & Blending;
- Self-Power Generation 80 MW Gas Generators and Purchase of Rights to Gas Field Use;
- Discharge Collocation with Power Plant in Well Mixed Tidally Influenced Zone – No Need for Outfall.

Plants

	Perth	Sydney
Capacity (ML/d)	125	250
Distance from intake (km)	< 1	4.5
Distance to delivery (miles)	26.2	14.3
Total Capital Cost (\$M)	\$325	\$1,539
Total Capital Cost - Desal Plant (\$M)	\$281	\$982
Total Capital Cost - Delivery (\$M)	\$44	\$557
Annualized Capital Cost (\$M/yr)	\$25	\$120
Total Annual O&M Costs (\$M/yr)	\$17	\$46
Annual O&M Cost - Desal Plant (\$M/yr)	\$16	\$42
Annual O&M Cost - Delivery (\$M/yr)	\$1	\$4
Cost of Water - Capital Component (\$/m3)	\$0.70	\$1.65
Cost of Water - O&M Component (\$/m3)	\$0.44	\$0.58
Cost of Water - Delivery Component (\$/m3)	\$0.02	\$0.06
Total Water Cost, \$/m3	\$1.16 adapted from	Waterlines:NWC Australia

Be Careful When Comparing Costs!

- Projects Differ By:
 - Source Water Salinity and Temperature;
 - Product Water Quality;
 - Unit Cost of Construction, Labor and Permitting;
 - Cost of Capital;
 - Unit Cost of Power;
 - Source of Equipment Supply;
 - Project Completion Schedule.

 Projects Have to Be Normalized for These and Other Factors for Accurate Comparison.

Water Production Costs of Desalination vs. Indirect Potable

Comparison of Huntington Beach Desalination &

OC Ground Water Replenishment Projects

Key Project Parameters	Orange County GWR Indirect Potable Reuse Project	Huntington Beach Seawater Desalination Project
Water Production Capacity	206 ML/d	189 ML/d
Source Water	WWTP Effluent Discharge	Seawater - Power Plant Cooling Water
Location	Orange County, California	Orange County, California
Source Water Treatment	MF+BWRO+UV+ Peroxidation+ Lime Conditioning	Granular Medial Filtration+SWRO+ Calcite Conditioning
Product Water Delivery	Groundwater Recharge Wells	Regional Water Distribution System

Comparison of Costs for Drinking Water Production

by Indirect Potable Reuse & Seawater

Key Cost Parameters	Orange County GWR Indirect Potable Reuse Project	Huntington Beach Seawater Desalination Project
Capital Costs (US\$)	\$486.9 MM @206 ML/d	\$335 MM @189 ML/d
Power @ US\$0.126/kWh	U\$12.4 MM/yr (1.31 kWh/m³)	US24.3 MM/yr (<mark>2.8 kWh/m³)</mark>
Chemicals	US\$4.6 MM/yr	US\$2.3 MM/yr
Maintenance	US\$1.4 MM/yr	US\$2.5 MM/yr
Membrane Replacement	US\$2.4 MM/yr	US\$0.9 MM/yr
UV Lamp Replacement	US\$0.3 MM/yr	Not Applicable
Labor	US\$3.6 MM/yr	US\$2.4 MM/yr
Other O&M Costs	US\$4.7 MM/yr	US\$2.3 MM/yr
Total Annual O&M Costs	US\$29.4 MM/yr	US\$34.7 MM/yr
Amortized Capital Costs	US\$27.8 MM/yr	US\$19.1 MM/yr
Cost of Water Production	US\$57.2 MM/yr US\$0.76/m ³	US\$53.8 MM/yr US\$0.78/m ³
Cost of Extraction/Delivery	US\$0.12/m ³	US\$0.07/m³
Total Cost of Water	US\$0.88/m ³	US\$0.85/m ³

Where Future Cost Savings Will Come From?

Main Areas Expected to Yield Cost Savings in the Next 5 Years (20 % Cost Reduction Target)

Improvements in Membrane Element Productivity:

- **Polymetric Membranes** (Incorporation of Nano-particles Into Membrane Polymer Matrix) – CSIRO & UCLA;

- Larger Membrane RO Elements (16" Diameter or Higher).

- Increased Membrane Useful Life and Reduced Fouling:
- Smoother Membrane Surface <u>Carbon Nanotube Membranes</u> CSRO & University of Texas (Austin).
 - Increased Membrane Material Longevity;
 - Use of Systems for Continuous RO Membrane Cleaning;
 - UF/MF Membrane Pretreatment.
- Commercial Forward Osmosis Systems;
- Co-Location With Power Plants;
- Regional Desalination and Concentrate Disposal;
- Larger RO Trains and Equipment;
- Full Automation of All Treatment Processes.

Nano-Structured SWRO Membranes 0.2 µm Ultrathin Polyamide Film

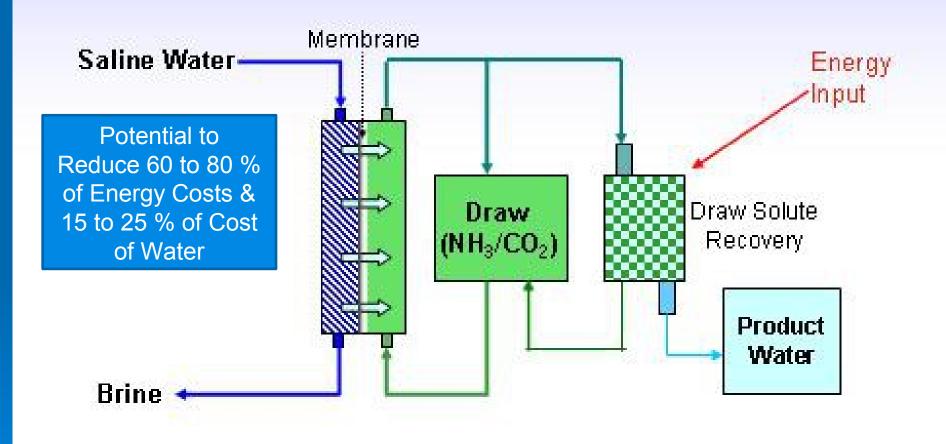
40 µm

120 µm

Micro-porous Polymeric Support

Reinforcing Fabric

22500001

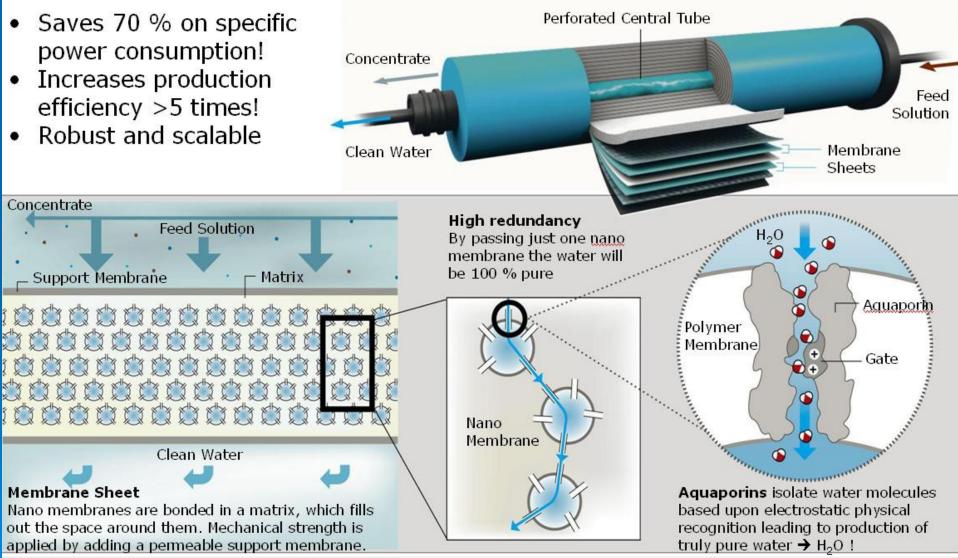

NP

100 nm

Polysulfone

Polyamide

Forward Osmosis (solute recycle)


OASYS

Research Directions to Meet the Long-Term 80 % Cost Reduction Goal

- Improve Membrane Useful Life and Productivity;
 - Develop Corrosion Resistant Non-Metallic Materials to Replace High-Quality/High Cost Stainless Steel RO Piping;
 - Reduce Pretreatment Costs;
 - Develop New-Generation Energy Recovery Systems;
 - Introduce Low-Cost Technologies for Beneficial Concentrate Use and Disposal;
 - Explore New Technologies for Seawater Desalination Different from RO and Thermal Evaporation.

Aquaporine-Based Desalination

Desalination Present Status & Future

Parameter	Today	Within 5 Years	Within 20 Years
Cost of Water (US\$/m ³)	US\$0.6-0.8	US\$0.5-0.6	US\$0.1-0.2
Construction Cost (Million US\$/ML)	1.2-2.4	1.0-2.0	0.5-1.0
Power Use (kWh/m³)	2.8-4.0	2.5-3.5	2.0-2.5
Membrane Productivity (gallons/day/membrane)	5,000-12,000	8,000-15,000	20,000-40,000
Membrane Useful Life (years)	5-7	7-10	10-15
Plant Recovery Ratio (%)	45-50	50-55	55-65

Concluding Remarks

- The Ocean Will Become One of the Key Sources of Reliable and Draught-Proof Coastal Water Supply in the Next 10 to 20 Years;
- Large-scale Seawater Desalination is Economical Today and Will Become Even More Cost-Competitive in the Future;
- The Future of Seawater Desalination Is Bright 20% Cost of Water Reduction in the Next 5 Years;
- Long-term Investment In Research and Development Has the Potential to Reduce the Cost of Desalinated Water by 80 % In the Next 20 Years.

Desalination Cost Trends

Question s?

