

OECD, Paris, October 2011

The Master Plan for Desalination in Israel, 2020

Abraham Tenne

Head of Desalination Division and Water Technologies Chairman of the WDA (Water Desalination Administration)

<u>The overall goal of</u> the Israeli Water Authority

Assure that water will be sustainable, available, reliable, in the required quantities, locations and qualities.

Water demand forecast (MCM/Year)								
Year 2008 2013 2015 2020								
Agriculture	430	530	530	530				
Industry	85	95	100	110				
Urban	730	840	880	980				
Aquifer rehabilitation	0	120	130	150				
Neighbors	130	130	150	150				
Nature	7	<mark>5</mark> 0	5 0	5 0				
Total demand	1,382	1,765	1,840	1,970				

These figures do not include effluents, storm water and brackish water for irrigation in the amount of 500 MCM/Year.

Water resources including desalination						
(MCM/Year)						
Year	2008	2013	2015	2020		
Natural resources	675	1,170	1,170	1,170		
Brackish water desalination	30	50	70	70		
Sea water desalination	140	585	600	750		
Total resources	845	1,805	1,840	1,990		
Total demand	1,382	1,765	1,840	1,970		
Gap	+537	-40	0	-20		

These figures do not include effluents, storm water and brackish water for irrigation in the amount of 500 MCM/Year.

Because we don't share Moses abilities to draw water from the rock.

Moses Drawing Water from the Rock Zabbar Parish Church

CLOSING THE GAP

 Water saving and efficient use of water.
 Water tariffs.
 Water wells purification and aquifers water quality improvement.
 Increasing capacity of waste water treatment and upgrading effluent quality.

Desalination.

REDUCING WATER DEMAND

Water saving and efficient use of water

- Media publications.
- Teaching activities in schools in all levels.
- Water leakage in piping (developing new technologies).
- Using water saving plantation (including new developments).
- Advanced irrigation systems (including new developments and improvements).
- Increasing water price.

REDUCING WATER DEMAND

Water Tariffs.

Real water tariffs is the basis for a sustainable water infrastructure

- Urban and Industrial Tariffs.
- Agriculture Water and Effluent Tariffs.
- Neighbors Tariffs.

Resources for increasing water supply (cont')

Water wells purification and aquifers water quality improvement.

- Assisting in developing technologies for purifying wells
- Funding well purification projects.
- Operating wells on the eastern and western parts of the shore aquifer.

Resources for increasing water supply (cont')

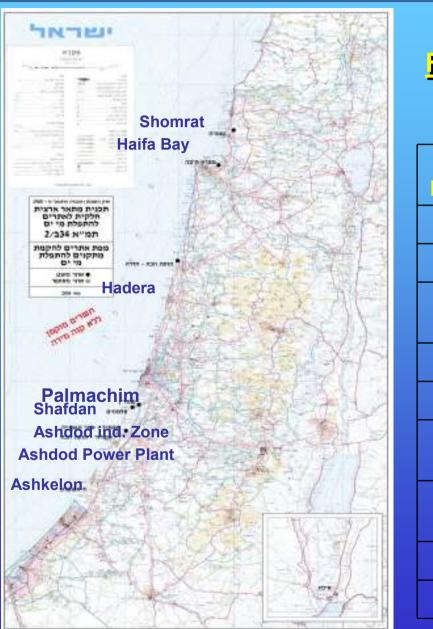
Increasing capacity of waste water treatment and upgrading effluent quality.

- Increasing effluent upgrading to a level of tertiary treatment for unlimited irrigation.
- Increasing construction of new water reuse systems.
- Encouraging more farmers to irrigate with effluent instead of fresh water.

Resources for increasing water supply (cont')

Brackish water Desalination

- Increasing existing BWRO plants.
- Encouraging construction of new BWRO plants.
- Encouraging technology improvements for BWRO plants.



Resources for increasing water supply (cont')

Sea water Desalination

- Increasing existing SWRO plants.
- Encouraging construction of new SWRO plants.
- Encouraging technology improvements for SWRO plants in Pretreatment and Post Treatment.
- Encouraging Energy Saving Technology improvements for SWRO plants.

National Plan 34/b/2	
For desalination of 73	55
MCM/Year	

Project Location
Shomrat
Haifa Bay
Hadera Power plant
Sorek
Palmachim
Asdod Industrial zone
Ashdod power plant
Ashkelon
Eilat

Agreements with Desalination Companies

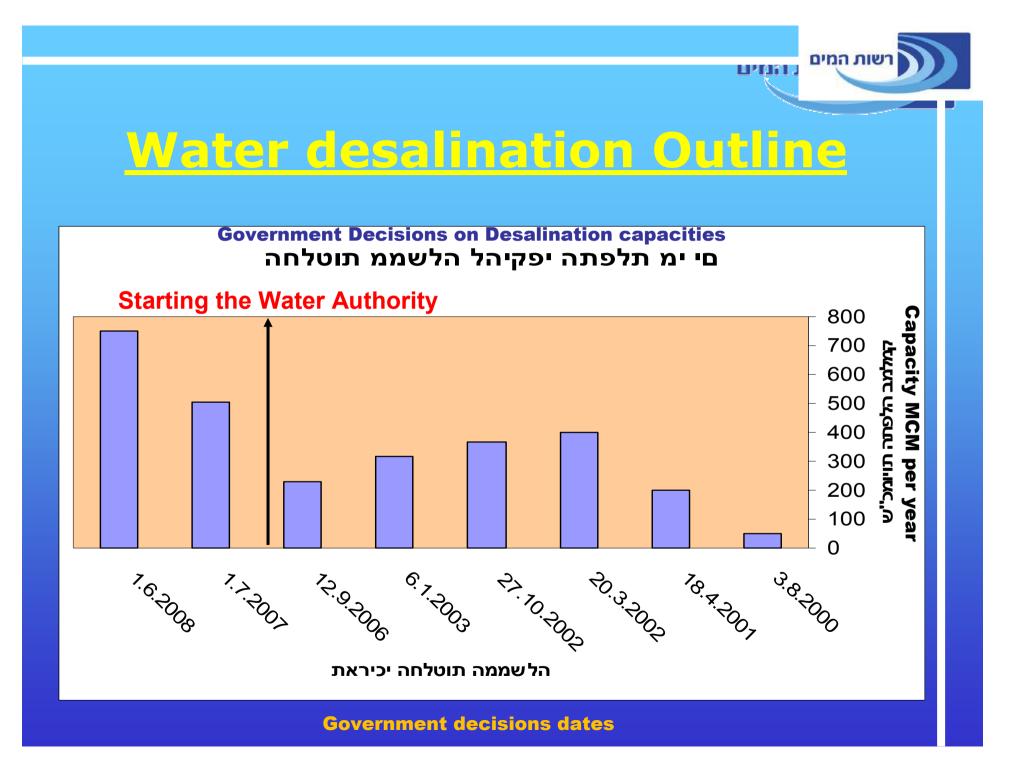
BOT
BOO
Regulations (Future)

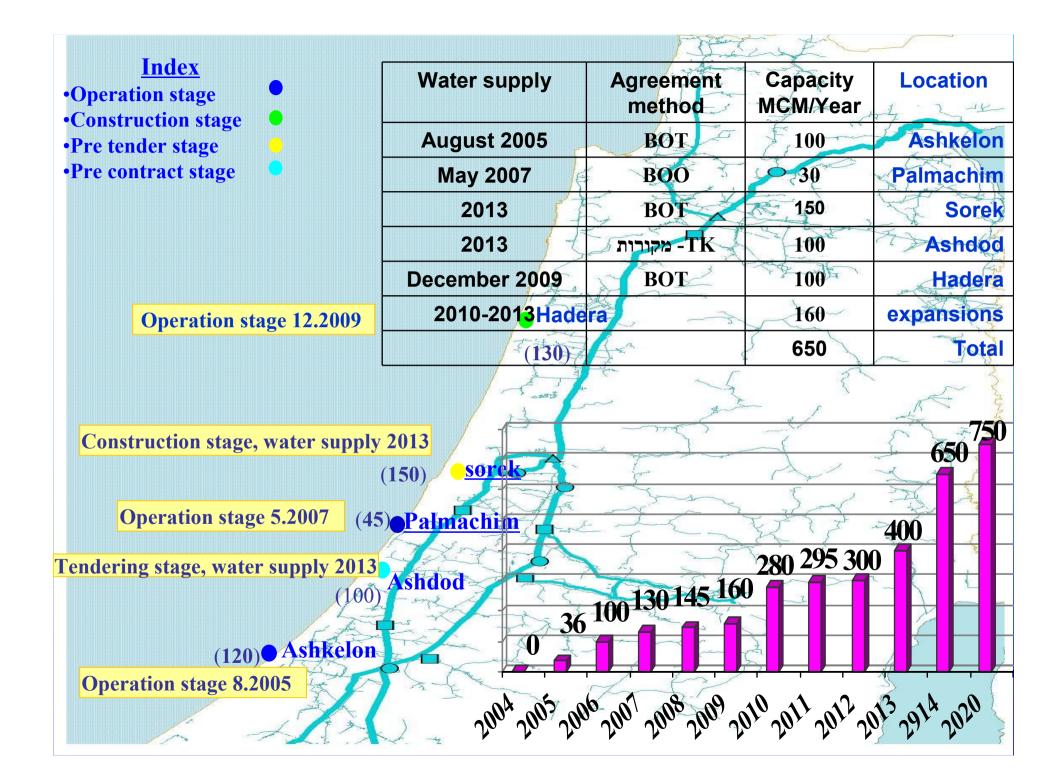
Water Desalination Prices US\$ Per CM

(VAT not included)

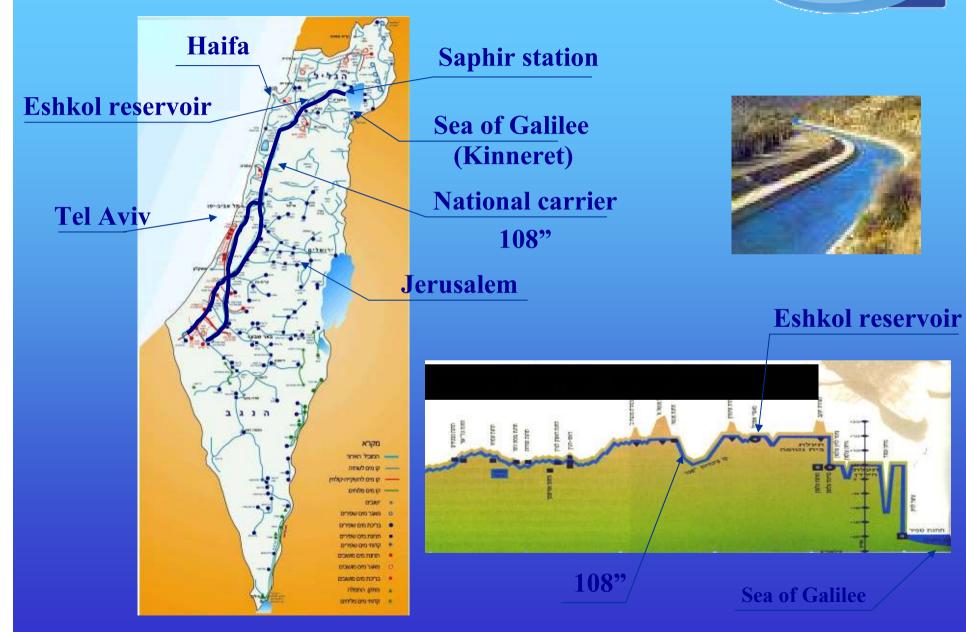
Project name	Ashkelon	Palmachim	Hadera	Sorek
Fixed price	0.4	0.35	0.25	0.25
Variable price	0.3	0.45	0.4	0.27
Total price	0.7	0.8	0.65	0.52

Water Tariffs

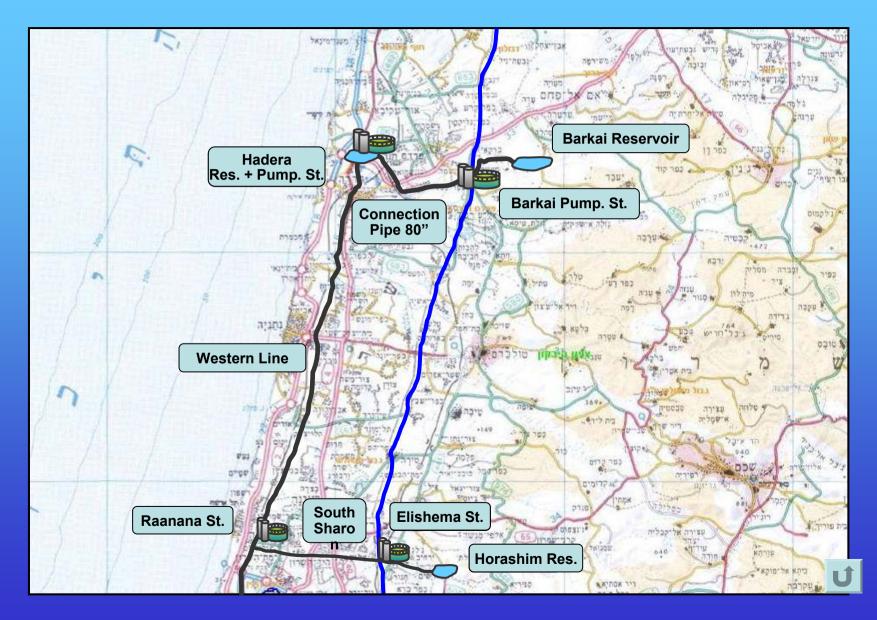

	Drinking w	Effluent	
sector	tariff (\$) per CM for first 3.5 CM/Month	Tariff(\$)	Tariff(\$)
Urban	2.5	3.5 (above 3.5 CM)	
Industry		3.5	
agriculture		0.7	0.4
neighbors		0.04-0.4	



Desalination Water Quality


Quality parameter	units	Contractual Demands			Ashkelon Actual	Palmachim Actual	Hadera Actual
		Ashkelon	Palmachim	Hadera			
Chloride	ppm	20	80	20	10-15	30-40	10-15
Boron	ppm	0.4	0.4	0.3	0.2-0.3	0.3-0.38	0.2-0.3
рН	ppm	7.5-8.5	7-8	7.5-8.5	8-8.5	8-8.5	8-8.5
LSI		-0.2 to 0.5	-0.5 to 0.5	0 to 0.5	0 to 0.5	0-0.5	0 to 0.5
Alkalinity	ppm*			>80	45-50	40-45	> 80
Hardness	ppm*	>60	>75	80-120	90-110	85-95	80-120
Turbidity	NTU	<0.5	<0.8	<0.5	0.15-0.2	0.15-0.2	0.15-0.2

* As CaCO₃


Main Water Supply System

SWRO facilities connection a revolution in National system operation

Energy in Desalination Plants

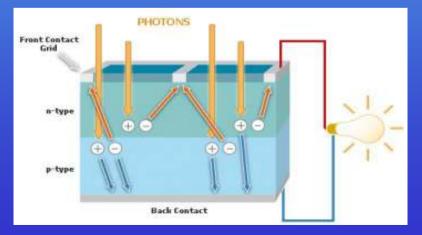
Reduced Specific Energy to 3.5 Kw/CM
Every Desalination Plant will have its own IPP NG.
Solar Panels at the new Desalination plants.

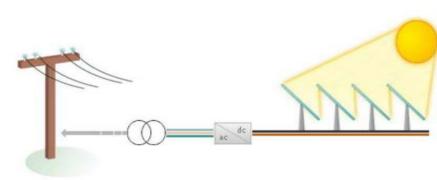
New Resources and Renewable Energy The Israeli Infrastructure ministry had decided to have independent private power plants of a total capacity of 4000-5000 MW in the next 10 years. **NG IPP** 2500-3000 MW 250-500 MW Solar Energy Wind energy 250-400 MW 1000-1100 MW **Pumped storage**

Renewable Energy

Solar Energy- The Israeli Government decided to build two solar power Plants in tow technologies:

Solar thermal plants for 80-110 MW
Photo voltaic plant of 15-30 MW.

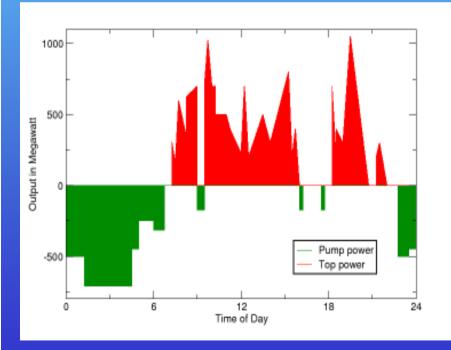

The PQ was published at 2009 and the tender will be published in few month.

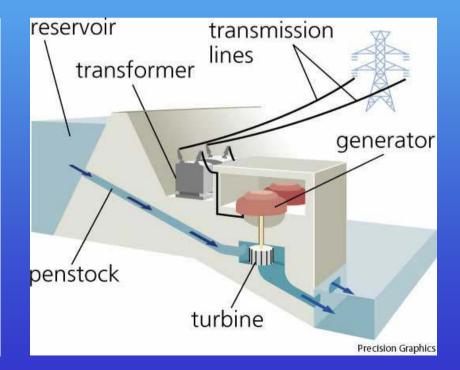

The plants will start its production at 2015.

<u>Photo voltaic plants</u>

Renewable Energy

Wind Energy- at present we have in Israel a wind turbine farm of 6 MW. The potential is 600 MW.





Renewable Energy

Pumped Storage Energy- There are already three approved projects of a total capacity of 700MW.

