

The EU funded SWIM-SM: developing capacity for Sustainable and Integrated Wastewater Treatment and Reuse

Online Course on Natural Treatment Systems: Wastewater Stabilization Ponds

### Waste Stabilization Ponds

#### **Course contents**

- 1. Introduction
- 2. Anaerobic ponds
- 3. Facultative ponds
- 4. Maturation ponds
- 5. Pond system lay-out
- 6. Operation and maintenance
- 7. Costs

This course is based on lecture notes of dr.ir. Peter van der Steen



### Part 1 Introduction

### Introduction (1)

### Waste Stabilisation Ponds What is **Stabilisation**??

- ✓ Most wastewaters contain organic matter
- ✓ If discharged into the environment without treatment:





### Introduction (2)

#### What is **Stabilisation** ??

Treatment through stabilisation refers to the degradation of organic matter (either aerobic or anaerobic) in a **confined and engineered system** rather than in the environment.



### Introduction (3)



- In waste stabilisation ponds both aerobic and anaerobic bacteria contribute to waste stabilisation.
- The oxygen required for aerobic stabilisation is produced by photosynthesis, waste stabilisation ponds are therefore typical natural systems: not requiring any electricity for oxygen input.





### Introduction (4)

#### How do pond systems look like?



- Ponds are simple man-made basins/lagoons, often surrounded by an earthen embankment.
- The waste is confined and bacteria stabilise the waste.

### **Advantages of WSP**

- Very effective removal of pathogens, and therefore effluent suitable for reuse
- Effective BOD removal
- Simple and cheap construction, operation and maintenance
- Low energy requirements
- Simple sludge management





### **Disadvantages of WSP**

- Large land area required
- Performance strongly affected by temperature
- Potential odour release
- Low degree of operational control





### A typical WSP system



### Part 2 Anaerobic Ponds

### Mechanisms (1)

The two main mechanisms in Anaerobic ponds:

- Sedimentation of particles
- Degradation of organic material via a multi-step anaerobic degradation process



### **Mechanisms (2)**

These mechanisms are realised in a simple pond: depth 3-5 meters, HRT for municipal sewage 1-3 days





### Sludge accumulation

- Sludge accumulation causes the effective pond volume to decrease.
- This shortens the HRT and may result in incomplete settling and incomplete anaerobic degradation.
- Therefore pond desludging is required after one third of the pond volume is filled with sludge.
  - Can be done by means of sludge pump
  - In case of parallel ponds, one can be temporary taken out of service, dried and then excavated



### **Summary**

### Removal efficiencies in APs

**BOD** 40-60%

- TSS 50-70%

Faecal coliforms 90%

Helminth eggs 75-90%

# Additional treatment is required!



### Part 3 Facultative Ponds

### Facultative ponds: what means facultative?

In a facultative pond both an aerobic and an anaerobic section is present.

- Oxygen production is by algae photosynthesis
- A well functioning pond has therefore a green colour
- Removal of BOD is a co-operative action of algae and bacteria.



Algae – bacteria symbiosis & anaerobic digestion





### **Summary facultative ponds**

### Typical facultative pond effluent quality:

BOD 20 - 60 mg/l

TSS 30 - 150 mg/l

Faecal coliforms 10<sup>4</sup>-10<sup>6</sup> 1/100ml

Helminth eggs 0-50 1/liter

In most cases additional treatment is required!

pathogen removal & algae removal



### Part 4 Maturation Ponds

### **Maturation ponds**

- Main objective: pathogen removal
- Entirely aerobic and 1-1.5 m deep
- Typical HRT 3-10 days
- BOD removal less than 25%
- Usually more ponds in series



### **Comparison of removal efficiencies**

|                        | Removal (log units) |         |
|------------------------|---------------------|---------|
|                        | Bacteria            | H. eggs |
| Primary sedimentation  | 0-1                 | 0-2     |
| Activated sludge*      | 0-2                 | 0-2     |
| Trickling filter*      | 0-2                 | 0-2     |
| Chlorination/ozonation | 2-6                 | 0-1     |
| WSPs                   | 1-6                 | 1-3     |

<sup>\*</sup> Including settling pond/tank



### Pathogen removal mechanisms





#### FC removal mechanisms

#### Removal mechanisms:

- Adsorption to suspended solids and sedimentation
- Grazing by protozoa
- Natural decay

Natural decay is the most important mechanism. There are four sub-mechanisms:

- → Lack of food
- → DNA damage by UV radiation
- → pH stress
- → photo-oxidation



### **Summary maturation ponds**

### Typical maturation pond effluent quality:

BOD 10 - 50 mg/l

TSS 20 - 100 mg/l

Faecal coliforms 10<sup>2</sup>-10<sup>3</sup> 1/100ml

Helminth eggs 0 1/liter

Maturation pond effluent satisfies the strictest WHO criteria for effluent reuse in irrigation (< 1000 FC/100 mL).



# Part 5 Pond system lay-out

### WSP lay-out (1)







# Part 6 Operation and maintenance

### **Operation and maintenance**

- WSP have low O&M requirements
- Low does not mean no!
- Main O&M activities:
  - Cleaning inlet/outlet
  - Cleaning/maintaining embankments
  - Prevent scum layers in FP and MP
  - Desludging anaerobic ponds
  - Influent/effluent monitoring



## Part 7 Costs

### WSP costs (1)

- Investment cost
  - Civil works
  - Electrical and mechanical equipment
  - Land ←
- Operating costs
  - Maintenance
  - Electricity
  - Labour
  - Sludge disposal



