Gestion Intégrée Durable de l'Eau (SWIM), Union Européenne En coopération avec

Middle East Desalination Research Center (MEDRC), Oman

Boîte à outils

des

Modèles graphiques et numériques de l'estimation des coûts des Projets de dessalement par osmose inverse d'eau de mer

Juin 2013

Auteur:

Nikolay Voutchkov, PE, BCEE

nvoutchkov@water-g.com

Aperçu de l'estimation du coût du projet

Introduction

Les océans mondiaux contiennent plus de 97,2 % des ressources en eau de la planète. En raison de la salinité élevée de l'eau des océans et des frais importants associés au dessalement de l'eau de mer, la plupart de la fourniture mondiale en eau provient désormais traditionnellement des sources d'eau fraîche - nappes phréatiques, rivières et lacs. L'évolution des tendances climatiques observée de par le monde au cours de la dernière décennie associée aux pressions de la croissance accélérée de la population et la disponibilité limitée des ressources en eau fraîche nouvelles et bon marché font passer l'attention du secteur de l'eau à une tendance émergente : le dessalement de l'eau de mer.

Jusqu'à récemment, le dessalement de l'eau de mer était limité aux régions dominées par un climat désertique. Les dernières avancées technologiques associées à la baisse des coûts de production de l'eau et à la demande en énergie ont élargi son utilisation dans les zones côtières, traditionnellement alimentées en ressources en eau fraîche. À l'heure actuelle, les usines de dessalement fournissent approximativement 1 % de la fourniture en eau potable dans le monde. La capacité de production d'eau fraîche depuis des sources salines (saumâtre et eau de mer) a connu une croissance exponentielle ces 15 dernières années.

En 2010, plus de 15 000 usines de dessalement dans le monde produisaient un total de 65,2 millions de mètres cubes par jour (m³/jour) d'eau fraîche depuis de l'eau de mer et de l'eau de saumâtre (IDA, 2011). Approximativement 60 % de la capacité de production des usines installées sont attribués aux usines de dessalement à osmose inverse (RO) et 34,8 % aux installations de distillation thermique.

Une claire tendance récente en matière de dessalement de l'eau de mer repose sur la construction d'usines d'une plus grande capacité, qui livre un volume en permanente augmentation d'eau fraîche depuis les villes côtières à travers le monde. Alors que la plupart des importantes usines de dessalement construites entre 2000 et 2005 ont été conçues à l'origine pour alimenter entre 5 et 10 % uniquement de l'eau potable des grands centres urbains côtiers, de nos jours la plupart des programmes des projets régionaux ou nationaux de dessalement dans des pays tels que l'Espagne,

l'Australie, Israël, l'Algérie et Singapour visent à assurer entre 20 et 25 % de leurs besoins à long terme en eau potable grâce à de l'eau de mer dessalée.

Actuellement, l'osmose inverse est la technologie de dessalement la plus communément utilisée dans la mesure où pour la plupart des sources salines et des applications, elle rapporte de l'eau fraîche avec une utilisation d'énergie et des coûts plus faibles que ceux des technologies alternatives traditionnelles de dessalement. Ainsi, cette boîte à outils met l'accent sur les méthodes et les facteurs qui déterminent des coûts tout compris pour la construction, le fonctionnement et l'entretien (F&E) et la production d'eau fraîche globale par le principe de dessalement par osmose inverse de l'eau de mer (SWRO).

Définitions du coûts du projet

Les paramètres économiques clés d'un projet de dessalement par osmose inverse d'eau de mer sont :

- Coûts d'investissement ;
- Coûts de fonctionnement et d'entretien ;
- Coût de la production d'eau.

Coûts d'investissement

Les coûts d'investissement comprennent toutes les dépenses associées à la mise en œuvre du projet de dessalement : depuis le développement conceptuel, la conception, les permis, le financement, la construction, la mise en service et les essais d'acceptation pour un fonctionnement continu. Les coûts de construction englobent toutes les dépenses directes nécessaires pour : construire l'arrivée d'eau à la source de l'usine et concentrer les systèmes de rejet et toutes les structures liées au projet ; fournir et installer tout l'équipement de l'installation, installer et connecter la tuyauterie du projet et les équipements collectifs ; et livrer de l'eau dessalée à l'/aux utilisateur(s) final (finaux). En raison de leur association directe à la construction des installations physiques, les coûts de construction sont aussi qualifiés de coûts d'investissement "directs" ou "de base". Les coûts de construction représentent généralement entre 50 et 85 % des coûts d'investissement totaux.

Les 15 à 50 % restant des coûts d'investissement sont souvent qualifiés de coûts "indirects" ou "accessoires". Ces coûts sont associés à toutes les

démarches administratives, d'ingénierie, de permis et de financement nécessaires pour concrétiser le projet, ainsi que les dépenses nécessaires pour assurer les services des entrepreneurs pour la conception, la construction et l'exploitation du projet de dessalement.

Les coûts d'investissement du projet dans son intégralité sont généralement présentés en unités monétaires (c-à-d., US\$) et sont estimés soit pour l'année au cours de laquelle la construction du projet a été lancée soit se réfèrent à la moitié de la période de construction. Selon le type, la durée et le terme du financement du projet, les coûts d'investissement sont souvent convertis en unités monétaires par année et qualifiés de coûts amortis ou annualisés (US&/an.). Par ailleurs, tant les coûts de construction que les coûts d'investissement sont parfois présentés en tant que dépenses par unité de capacité de production d'eau fraîche par projet de dessalement (c-à-d., US\$/m³.jour ou US\$/1 000 gallons).

Coûts de fonctionnement et d'entretien

Les coûts de fonctionnement et d'entretien représentent toutes les dépenses associées aux : fonctionnements des usines SWRO (électricité, produits chimiques, main d'œuvre et le remplacement des consommables, tels que les membranes et les filtres à cartouche) ; à l'entretien de l'équipement de l'usine, les bâtiments, les terrains et les services ; et en conformité avec tous les permis environnementaux et de fonctionnement des usines et les autres exigences règlementaires relatives. Les coûts de fonctionnement et d'entretien associés à un projet particulier sont généralement exprimés en tant que dépenses opérationnelles tout compris pour une période d'une année (c-à-d., US\$/an.) ou en tant que coûts de fonctionnement pour la production d'une unité de volume d'eau dessalée (c-à-d., US\$/m³).

Les coûts de fonctionnement et d'entretien peuvent être divisés en deux catégories principales : fixes et variables. Les coûts de F&E sont des dépenses annuelles qui ne sont pas fonction du montant actuel de l'eau fraîche produite par l'usine de dessalement. Ces dépenses F&E comprennent : les coûts de main d'œuvre (salaires et avantages sociaux) ; frais d'entretien de l'équipement comme routine préventive, suivi environnemental et de la performance, assurance opérationnelle, frais administratifs, ainsi que diverses autres dépenses générales. Les coûts de F&E variables sont généralement proportionnels au volume réel d'eau dessalée produite par l'usine SWRO et comprennent les dépenses pour :

l'électricité, les produits chimiques, le remplacement des membranes RO et des filtres à cartouche, ainsi que le rejet des déchets. En général, les coûts variables représentent entre 50 et 85 % des coûts de F&E annuels totaux, alors que les coûts fixes représentent entre 15 et 50 % de ces dépenses.

Coût de l'eau

Le coût de l'eau est un paramètre économique qui incorpore toutes les dépenses F&E annuelles et d'investissement du projet associées à la production de l'eau et n'est généralement pas présenté en tant qu'unités monétaires par unité de volume d'eau dessalée (c-à-d., US\$/m³). Le coût total de la production d'eau fraîche (coût de l'eau) est calculé en divisant la somme des coûts d'investissement amortis (annualisés) (c-à-d., US\$/an.) et les coûts de F&M (c-à-d., US\$/an) par le volume annuel total de production d'eau fraiche par usine de dessalement (m³/an). Pour une usine SWRO typique, les coûts d'investissement amortis et les coûts de F&E sont généralement dans la gamme des 40 à 60 % du coût total de l'eau, respectivement.

Cependant, le taux entre les composants clés des coûts varie d'un projet à l'autre, les "plus grandes parties du diagramme des coûts" sont généralement les dépenses de construction de l'usine (c-à-d., les coûts d'investissement directs), l'électricité et les autres coûts de F&E (par ex., entretien, produits chimiques, membranes, etc.). Les coûts d'investissement indirects, qui comprennent principalement les dépenses pour l'ingénierie du projet, le développement et le financement, représentent également une portion importante (généralement entre 10 et 20 %) des coûts de production de l'eau.

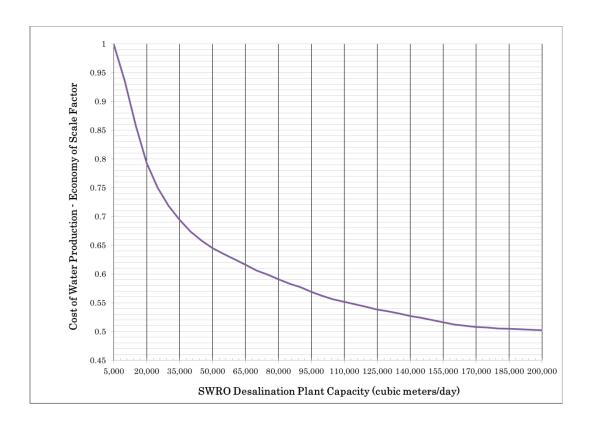
Coûts d'investissement - Modèles graphiques

Les coûts d'investissement d'un projet peuvent être divisés en deux grandes catégories : (1) les coûts de construction (parfois appelés "coûts d'investissement directs" ou "coûts de base du projet") et (2) les autres coûts d'investissement liés au projet (ingénierie, développement, financement et imprévus) qui sont souvent qualifiés de "coûts d'investissement indirects" ou "coûts accessoires du projet". Une répartition typique des coûts

d'investissement du projet pour des projets de dessalement de basse et de haute complexité est représentée dans le Tableau 1.

Tableau 1
Répartition des coûts d'investissement d'un projet SWRO

Poste de coût	Pourcentage des coûts d'investissement totaux (%)	
	Projet à basse complexité	Projet à haute complexité
Coûts (de construction) d'investissement directs	-	-
1. Préparation du site, routes et parking	1,5 – 2,0	0,5-1,0
2. Arrivée	4,5 - 6,0	3,0 - 5,0
3. Pré-traitement	8,5 – 9,5	6,0 - 8,0
4. Équipement du système RO	38,0 – 44,0	30,5 - 36,0
5. Post-traitement	1,5 – 2,5	1,0 - 2,0
6. Rejet	3,0 – 4,0	1,5 – 3,0
7. Traitement des déchets et des solides	2,0 – 2,5	1,0 – 1,5
8. Systèmes électriques et d'instrumentation	2,5-3,5	1,5 – 2,5
9. Équipement auxiliaire et de services et équipements collectifs	2,5 – 3,0	1,0 – 2,0
10. Bâtiments	4,5 – 5,5	3,0 - 5,0
11. Lancement, mise en service et essais d'acceptation	1,5 – 2,5	1,0 – 2,0
Sous-total Coûts (de construction) directs		
(% des coûts d'investissement totaux)	70,0-85,0	50,0 - 68,0

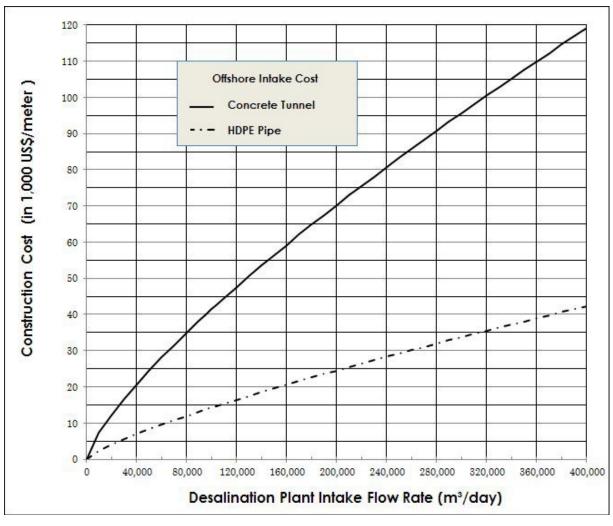

Tableau 1 (suite)

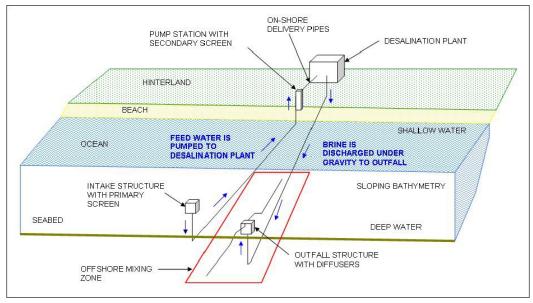
Répartition des coûts d'investissement d'un projet SWRO

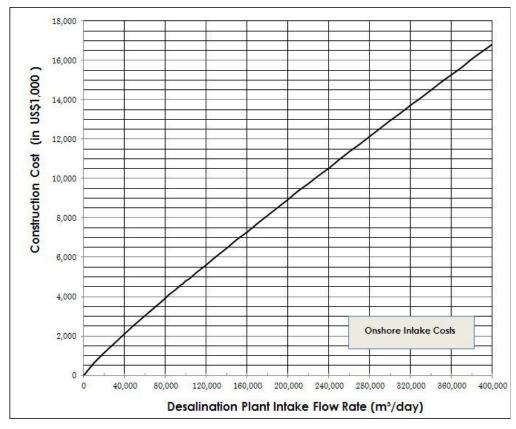
Poste de coût	Pourcentage des coûts d'investissement totaux (%)	
	Projet à basse complexité	Projet à haute complexité
Services d'ingénierie du projet		
1. Ingénierie préliminaire	0,5 - 1,0	0,5 – 1,5
2. Essais pilotes	0,0 - 0,5	1,0 – 1,5
3. Conception détaillée	3,5 - 4,5	5,0-6,0

4. Gestion de la construction et surveillance	1,0 – 2,0	2,5 – 3,5
Sous-total Services d'ingénierie	5,0 - 8,0	9,0 – 12,5
Développement du projet		
1. Administration, contrats et gestion	1,0 – 1,5	2,0-3,0
2. Autorisations environnementales (permis)	0,5 - 3,5	4,5 – 5,0
3. Services juridiques	0,5 – 1,0	1,5 – 2,0
Sous-total Développement du projet	2,0 - 6,0	8,0 – 10,0
Coûts de financement du projet		
1. Intérêt au cours de la construction	0,5 - 2,5	1,0 – 4,5
2. Fonds de réserve du service de la dette	2,0 - 5,5	4,5 – 8,5
3. Autres coûts de financement	0,5 – 1,0	3,5 – 4,5
Sous-total Financement du projet	3,0 – 9,0	9,0 – 17,5
Imprévu	5,0 - 7,0	6,0 – 10,0
Sous-total Coûts d'investissement indirects (% des coûts d'investissement totaux)	15,0 - 30,0	32,0 - 50,0
Total Coûts d'investissement	100 %	100 %

Coûts de dessalement - Économie d'échelle


Exigences du site de l'usine de dessalement Tableau 2


Exigences du terrain de l'usine de dessalement de l'eau de mer


Capacité de l'usine (m³/jour)	Exigences d'un terrain de	site d'une usine typique
	m²	acres
1 000	800 – 1 600	0,2 à 0,4
5 000	2 000 – 3 200	0,5 à 0,8
10 000	6 100 – 8 100	1,5 à 2,0
20 000	10 100 – 14 200	2,5 à 3,5
40 000	18 200 – 24 300	4,5 à 6,0
100 000	26 300 – 34 400	6,5 à 8,5
200 000	36 400 – 48 600	9,0 à 12,0
300 000	45 200 – 60 000	11.5 à 15,0

Note : Exigences du terrain sur la base d'une disposition classique d'une usine. Les usines compactes peuvent avoir des besoins réduits en terrain.

Coûts d'investissement des arrivées

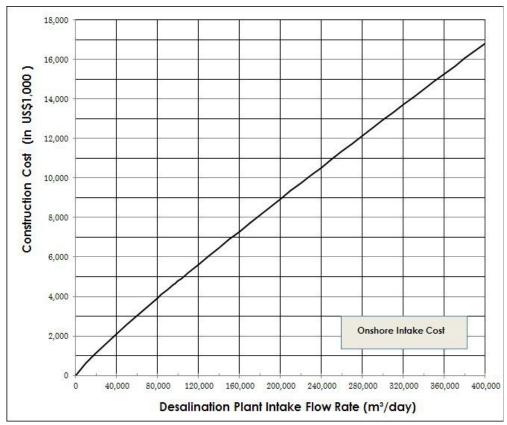
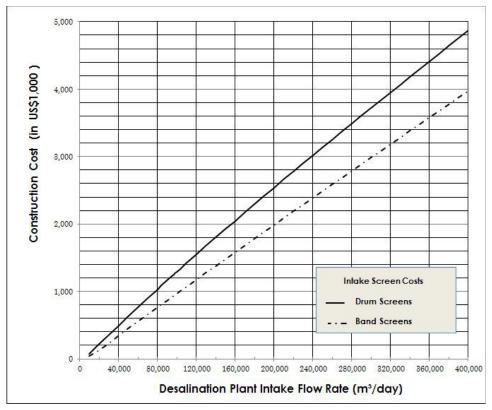
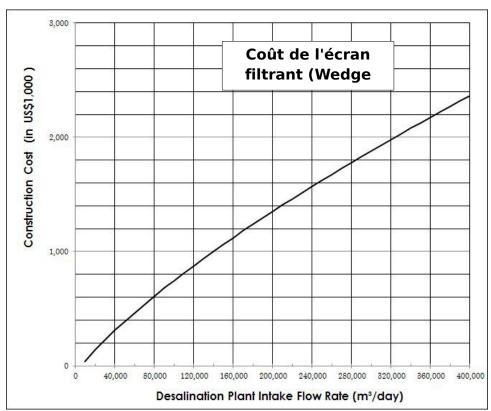
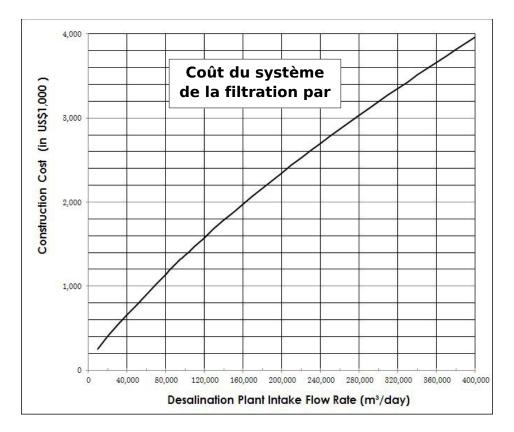


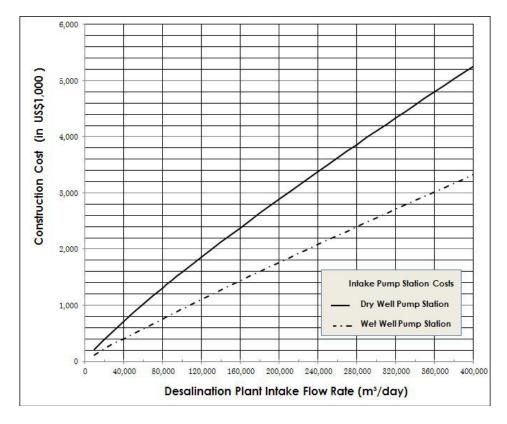
Tableau 3

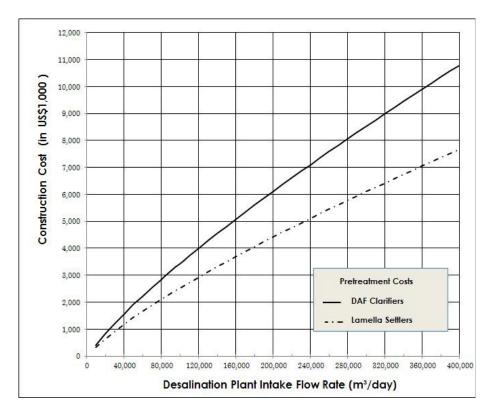

Coûts de construction des puits de prise d'eau verticaux

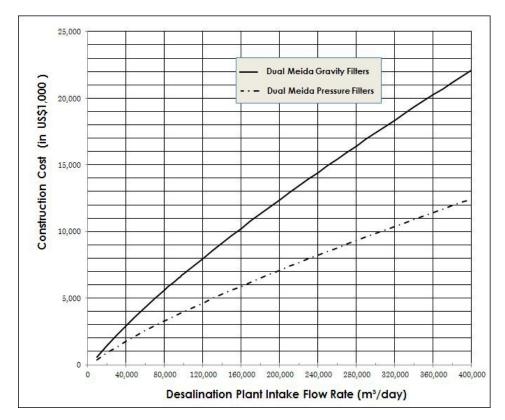

Capacité de production du puits de prise d'eau (m³/jour)	Coûts de construction en 2012 US\$ en tant que Fonction du Flux de Prise d'un puits, Q (m³/jour) et Profondeur du puits, H (m)
1 000 - 2 000	40 Q + 700 H + 25 000
2 000 - 4 500	50 Q + 850 H + 50 000
4 500 - 6 500	65 Q + 1 100 H + 80 000
6 500 - 10 000	76 Q + 2 000 H + 150 000
10 000 - 15 000	85 Q + 2 100 H + 190 000
15 000 - 30 000	90 Q + 3 300 H + 260 000

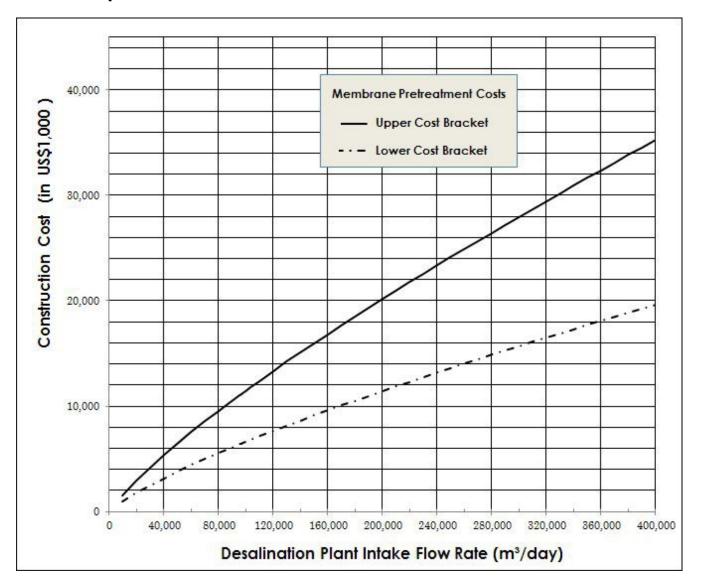

Tableau 4 Comparaison de la production et des coûts des divers types de puits

Type de puits	Capacité de production	Coût d'un puits
	typique (rendement)	individuel (US\$ MM)
	d'un puits (ML/d)	
Puits vertical	0,1 - 3,5 ML/j	\$ 0,2 - \$2,5 MM
Puits collecteur radio	0,5 - 20 ML/j	\$ 0,7 - \$5,8 MM
horizontal		
Puits incliné	0,5 - 10 ML/j	\$0,6 - \$3,0 MM
Puits HDD (par. Ex.	0,1 - 5,0 ML/j	\$0,3 - \$1,3 MM
Neodren)		
Galerie d'infiltration	0,1 - 50 ML/j	\$0,5 - \$27,0 MM


Coûts du filtre d'entrée




Coûts de la station de pompage de la prise d'eau


Coûts des lamelles et du flottateur à air dissous

Filtres sur milieu granulaire (anthracite et sable)

Filtres de pré-traitement de la membrane

Système par osmose inverse

Coûts de construction des composants clés du système RO à

Tableau 5

membranes

US\$250 – US\$350/élément
US\$230 – US\$330/element
US\$400 – US\$600/élément
US\$2.800 – US\$3.300/élément
US\$1.000 – US\$1.300/récipient
US\$1.300 – US\$1.800/récipient
US\$3.600 – US\$5.000/récipient
US\$250.000 – US\$750.000/Rame RO
US\$150.000 – US\$550.000/Rame RO
US\$30.000 – US\$150.000/Rame RO
US\$150.000 – US\$2.400.000/Rame RO

Coûts de système RO pour un système SWRO à passage simple dessalant l'eau méditerranéenne

Le graphique ci-dessous sert de graphique de référence pour toutes les estimations de coûts. Les coûts des systèmes SWRO qui traitent différentes eaux sont ajustés vers le haut avec les coefficients mentionnés dans le Tableau 6. Dans le tableau 6, pour les systèmes SWRO traitant l'eau méditerranéenne on considère un coût par unité de 1. En raison de leur salinité élevée, les systèmes SWRO traitant des eaux autres que celles de la Méditerranée les coûts seront plus importants et dérivés du coût du système RO de l'eau méditerranéenne pour un projet donné multiplié par le facteur dans le Tableau 6.

Le Tableau 7 peut être utilisé pour ajuster les coûts des systèmes RO qui disposent de plus d'un passage et ont été conçus pour produire une qualité d'eau meilleure que l'eau potable.

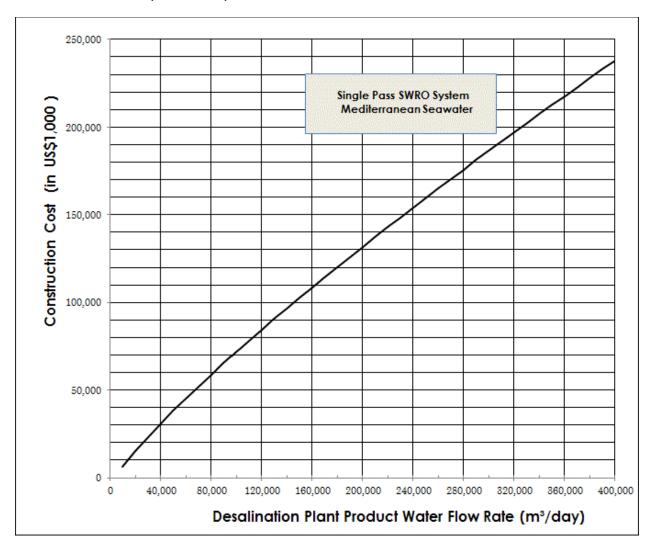


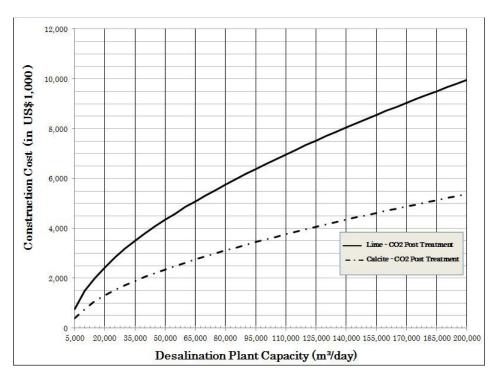
Tableau 6 - Coefficients d'ajustement pour la conversion du coût de l'eau pour le projet méditerranéen vers d'autres lieux

Source d'eau de mer	Côuts de construction de l'unité	Coûts F&E de l'unité	Coûts de l'eau de l'unité
Méditerranée	1,0	1,0	1,0
Golfe d'Oman	1,09	1,07	1,08
Mer rouge	1,12	1,10	1,11

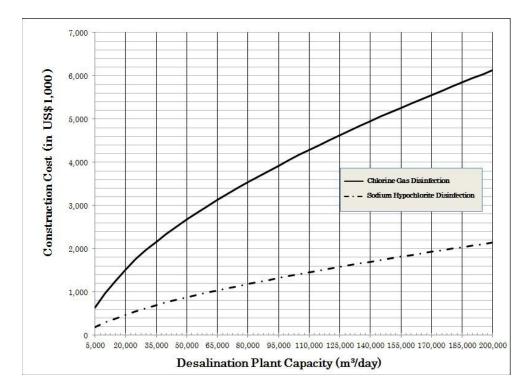
Golfe arabique	1,16	1,14	1,15

Tableau 7 - Coefficients d'ajustement pour la conversion du coût de l'eau pour le projet méditerranéen avec RO à passage simple vers des systèmes RO

Effet de la qualité de l'eau produite cible sur les coûts de l'eau			
Qualité de l'eau	Coûts de	Coûts F&E	Coût de l'eau
produite cible	construction		
TDS = 500 mg/L	1,00	1,00	1,00
Chlorure = 250			
mg/L			
Bore = 1 mg/L			
Bromure = 0,8			
mg/L	6 1) 50)		
TDC 250 "	Système RO à pass	· ·	1 10 1 10
TDS = 250 mg/L	1,15 - 1,25	1,05 - 1,10	1,10 - 1,18
Chlorure = 100			
mg/L Bore = 0,75 mg/L			
Bromure = 0,5			
mg/L			
9, =	Système RO à second passage partiel		
TDS = 100 mg/L	1,27 - 1,38	1,18 - 1,25	1,23 - 1,32
Chlorure = 50	, ,	,	,
mg/L			
Bore = 0.5 mg/L			
Bromure $= 0.2$			
mg/L			
	Système RO à deux passages complets		
TDS = 30 mg/L	1,40 - 1,55	1,32 - 1,45	1,36 - 1,50
Chlorure = 10			
mg/L			
Bore = 0.3 mg/L			
Bromure = 0,1			
mg/L	Custàna a DO à dann		a LIV
	Système RO à deux passages complets + IX		

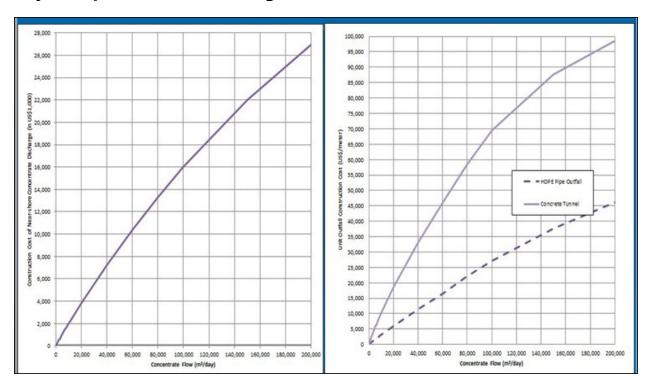

Estimation pour une unité 40 MLD

Coût de construction d'un passage simple SWRO 40MLD Système utilisant l'eau de la mer Méditerranée= 30 MM \$US (voir Graphique de coûts RO)


Coût de construction d'un passage simple SWRO 40MLD Système utilisant l'eau du Golfe Persique = 30 MM \$US x 1.16 = 34.8MM US\$

Coût de construction d'un passage double SWRO 40MLD Système utilisant l'eau du Golfe Persique = 34.8 MM \$US x 1.3 = 45.24MM

Coûts de production post-traitement Systèmes à chaux et à calcite



Système de désinfection

Coûts des rejets

Rejets à proximité ou au large des côtes

Coûts des méthodes alternatives de rejets

Tableau 8 - Coûts d'investissement des méthodes alternatives de rejets

Méthode de rejet	Coût de construction pour les rejets (US\$/m³.jour)
Rejet d'eau sur nouvelle surface (nouveau déversoir avec diffuseurs)	50 - 750
Colocalisation d'usine de dessalement et rejet d'une centrale	10 - 30
Co-rejet avec rejets d'une usine de traitement des eaux usées	30 - 150
Rejet d'égouts sanitaires	5 - 150
Injection d'un puits sur plage/profond	200 - 625
Bassins d'évaporation	300 - 4.500
Irrigation par aspersion	200 - 1.000
Rejet zéro liquide	1.500 - 5.000
Note: US1/m^3$.jour = US3.785/MGD$	

Autres coûts de construction

Autres frais de construction Exemple pour une unité 40 MLD

Traitement des déchets et solides @ 15-75 US m .jour (bassin de rétention) = 45US m .jour X 40,000 m .jour = 1.8MM US s

Électricité et instrumentation @ $100-250 \text{ US}/\text{m}^3$.jour = $200 \text{US}/\text{m}^3$.jour X $40,000 \text{ m}^3$.jour = 8 MM US

Services techniques et auxiliaires @ 30-150 US\$/m³.jour = 80US\$/ m³.jour X 40,000 m³.jour = 3.2MM US\$

Construction @ $50-100 \text{ US}/\text{m}^3$.jour = $60 \text{US}/\text{m}^3$.jour X $40,000 \text{ m}^3$.jour = 2.4 MM US

Mise en route, commercialisation et test d'acceptation @ 40-80 US\$/m³.jour = 50US\$/ m³.jour X 40,000 m³.jour = 2MM US\$

Résumé des coûts d'investissement directs - Exemple pour l'Usine 40 MLD

Tableau 9 - Résumé des coûts directs du projet SWRO 40 MLD traitant l'eau méditerranéenne avec un système RO à passage simple

Poste du coût	Coût (US\$)
Préparation du site, routes et parking	0,6 MM
Arrivée	9,5 MM
Pré-traitement	7,8 MM
Équipement système RO	30,00 MM
Post-traitement	2,1 MM
Rejet	3,0 MM
Traitement des déchets et des solides	1,8 MM
Systèmes électriques et	8,0 MM
instrumentation	
Installations auxiliaires et de services	3,2 MM
Bâtiments	2,4 MM
Lancement, mise en service et essais	2,0 MM
d'acceptation	
Coûts (construction) d'investissement	US\$70,4 MM
directs	

Tableau 10 - Résumé des coûts indirects du projet SWRO 40 MLD traitant l'eau méditerranéenne avec un système RO à passage simple

Poste de coût	Coût unite (US\$/m³.jour)	Coût (US\$)
Ingénierie préliminaire	30-100	1,2 MM
Essais pilotes	10-50	0,4 MM
Conception détaillée	75-175	3,0 MM
Gestion de la	40-80	1,6 MM
construction et suivi		
Administration, contrats	25-50	1,0 MM
et gestion		
Autorisations	20-200	0,8 MM
environnementales et		
sensibilisation du public		
Services juridiques	20-150	0,8 MM
Intérêt au cours de la	20-180	0,8 MM
construction		
Fonds de réserve du	80-340	3,2 MM
service de la dette		
Autres coûts de	20-80	0,8 MM
financement		
Imprévu	5-10 % du total	4,6 MM

Coûts d'investissement	\$ 18,2 MM
indirects	

Coûts d'investissement totaux - Exemple pour l'Usine 40 MLD

Total frais d'investissements= frais d'investissements directs + indirects= 70.4MMUS\$+ 18.2MM US\$= 88.6MM US\$

Exemple pour un délai de paiement de 20 ans, 5 % de taux d'intérêt $CRF = [(1+0,05)^{20}-1]/[0,05 (1+0,05)^{20}] = 12.462$

Amortissement des coûts d'investissements= Cap/(CRF x Qp X365 j)= 88,6 MMUS $\frac{12.462 \times 40,000 \text{m}^3}{\text{j} \times 365 \text{j}}$ = 8\$0.49/m³

Répartition des coûts de F&E annuels

	T	
Répartition coûts F&E		
annuels		
Poste de coût	Pourcentage du coût total	I F&E (%)
	Projet basse complexité	Projet haute complexité
Coûts F&E variables		
5. Électricité	45,0 - 61,0	35,0 - 58,0
6. Produits chimiques	3,0 - 6,5	5,5 - 9,0
7. Remplacement des	5,0 - 9,0	6,5 - 11,0
membranes et filtres à		
cartouche		
8. Rejet de flux de	2,5 - 5,5	3,5 - 7,0
déchets		
Sous-total Coûts F&E	55,5 - 82,0	50,5 - 85,0
variables		
Coûts F&E fixes		
5. Main d'œuvre	5,0 - 9,5	4,0 - 11,0
6. Maintenance	6,5 - 12,5	3,0 - 13,0
7. Suivi	0,5 - 4,0	1,0 - 5,0
environnemental et		
performance		
8. Coûts F&E indirects	7,5 - 18,5	7,0 - 20,5
Sous-total Coûts F&E	19,5 - 44,5	15,0 - 49,5
fixes		
Total Coûts F&E	100 %	100 %

Tableau 11 - Utilisation d'énergie comme Fonction de la source d'eau de mer

Source eau de mer	Utilisation d'énergie système SWRO (kWh/m³)
Méditerranée	3,6 - 4,0
Golfe d'Oman	3,9 - 4,2
Mer rouge	4,0 - 4,3
Golfe arabique	4,2 - 4,5

Tableau 12 - Coûts de F&E de l'Unité et Exemple d'estimation des coûts pour l'Usine 40 MLD

Poste de coût	Coût de l'unité (US\$/m³)	Coût (Millions US\$/an)
Coûts F&E variables		
Électricité @ 4,0	Fonction de la source	3,504
kWh/m³ @ US\$0,06/kWh	d'eau et tarification	
Produits chimiques	0,025-0,075	0,365
Remplacement des	0,020-0,070	0,292
membranes et des		
filtres à cartouche		
Rejet de flux de déchets	0,015-0,035	0,219
Total Coûts F&E		4,380 MM
variables		
Coûts F&E fixes		
Main d'œuvre	0,015-0,040	0,219
Maintenance - 2 à 4 %	0,035-0,075	0,511
des coûts		
d'investissement directs		
Suivi environnemental	0,005-0,015	0,073
et performance		
Coûts F&E indirects	0,025-0,075	0,365
Total Coûts F&E fixes		1,168 MM
Total Coûts F&E		& 5,548/an

Tableau 13 - Répartition du Coût de l'eau - Exemple pour l'Usine 40 MLD

Coût de l'eau - Composants variables et fixes				
Poste coût de l'eau	Coûts (US\$/m³)	Coûts (% du total)		
Composants variables				
coût de l'eau				
Électricité	0,240	27,6 %		
Produits chimiques	0,025	2,9 %		
Remplacement des	0,020	2,3 %		
membranes RO et des				
filtres à cartouche				
Rejet de flux de déchets	0,015	1,7 %		
Total coûts variables	0,30	34,5 %		
Composants fixes coût				
de l'eau				
Coûts de recouvrement	0,490	56,3 %		
de l'investissement				
Main d'œuvre	0,015	1,7 %		
Maintenance	0,035	4,0 %		

Suivi environnemental	0,005	0,6 %
et performance		
Autres coûts F&E	0,025	2,9 %
Total coûts fixes	0,57	65,5 %
Total coûts de	0,87	100 %
production de l'eau		

Les composants variables de ce tableau sont les mêmes que les composants variables des coûts de F&E. Les composants fixes du coût de l'eau sont la somme des coûts de F&E fixes et des coûts de recouvrement de l'investissement.

Tableau 14 - Coût de l'eau - projets récents En Afrique du nord et en Méditerranée

Usine	Taille (MLD)	Année de l'offre de coûts	Coût de l'eau (US\$/m³) pour année d'offre de coûts et in (2013\$)
Dhekelia, Chypre	50	1997/2007	1,19/0,88 (1,18)
Larnaca, Chypre	54	1999/2009	0,76/1,0 (1,22)
Arzew, Algérie	86	2005	0,90 (1,33)
Beni Saf, Algérie	150	2008	0,70 (0,89)
Cap Dijnet, Algérie	100	2005	0,73 (1,09)
Douaouda, Algérie	120	2005	0,75 (1,11)
Hamma, Algérie	200	2008	0,82 (1,05)
Skikida, Algérie	100	2008	0,74 (1,13)
El Tarf, Algérie	50	2008	0,89 (1,14)
Magtaa, Algérie	500	2008	0,56 (0,72)
Tenes, Algérie	200	2008	0,59 (0,75)
Palmahim, Israël (NanoH2O)	82/123	2005/2013	0,78 (0,78)
Hadera, Israël	368/456	2008	0,60 (0,77)

Ashkelon, Israël	326	2008	0,53/(0,78)
Sorek, Israël	410	2013	0,59

Tableau 15 - Coût de l'eau - projets récents Mer Rouge et Golfe arabique

Usine	Taille (MLD)	Année de l'offre de coûts	Coût de l'eau (US\$/m³)
Al Taweelah C, EAU	325	2000	0,72 (1,12)
Shuaqaiq, Arabie saoudite	214	2006	1,03 (1,45)
Jeddah - Barge, Arabie s.	52	2008	2,27 (2,88)
Jeddah - Land, Arabie s.	240	2009	1,15 (1,40)
Ras Azzur, Arabie s.	300	2010	1,09 (1,26)
Fujairah, EAU	140	2004	0,86 (1,10)
Fujairah II, EAU		2008	0,81 (1,03)
Sur, Oman	80	2010	0,98 (1,13)
Al Dur, Bahreïn	218	2012	0,95 (1,00)
Shuwaikh, Koweït	136	2012	1,10 (1,16)
Shuaibah,	150	2011	0,94 (1,04)

Arabie saoudite		
Alable Sabuulle		

Tableau 16 - Éventail typique du coût de l'eau et de l'utilisation d'énergie à travers le monde

Classification	Coût de la production d'eau (US\$/m³)	Utilisation d'énergie du système SWRO (kWh/m³)
Fourchette bas régime	0,5 - 0,8	2,5 - 2,8
Fourchette moyen régime	1,0 - 1,5	3,0 - 3,5
Fourchette haut régime	2,0 - 4,0	4,0 - 4,5
Moyenne	1,1	3,1