

Sustainable Water Integrated Management (SWIM) - Support Mechanism
SUB-REGIONAL WORKSHOP 9-12 July 2012 Israel

- Water treatment options
 - Standard treatment schemes and technologies
- Yoav Yinon July 2012

Why treat drinking water?

To give him healthy chance

Water sources

- Surface water (lakes, rivers, rain catchment)
- Aquifer
- Desalination
- Recycled water

Source water is not H2O!

Treatment targets

- Physical targets (solids, turbidity)
- Health targets (bacteria, virus, pollution, minerals)
- Aesthetics (odor, color)
- System maintenance (hardness)
- Meet standards

The challenge: fit solution to the requirement

Common water treatment scheme

Coagulation and flocculation

Diameter of Particle	Type of Particle	Settling time through 1 m. of water
10mm	Gravel	1 seconds
1mm	Sand	10 seconds
0.1mm	Fine Sand	2 minutes
10 micron	Protozoa, Algae, Clay	2 hours
1 micron	Bacteria, Algae	8 days
0.1 micron	Viruses, Colloids	2 years
10 nm	Viruses, Colloids	20 years
1 nm	Viruses, Colloids	200 years

Settling Time for Particles of Various Diameters;

- Adding ferric salt to the raw water (like sodium aluminate)
- Mixing and contact for reaction
- Generation of flocs that settle in a clarifier

Process of Coagulation, Flocculation and Sedimentation

Settling

Filtration

- Types:
 - Granular (slow, fast)
 - Cake (precoated)
 - Membrane
- Backwash
- A polishing step
- Other actions biodegradation, absorption

The Filtration Spectrum

Filter classification

Type	Filtr. Rate (m/hr)	Media Size (mm)	Bed Depth (m)
Slow Sand	0.04-0.4	0.25-0.35	1.0
Rapid Sand	5-10	0.45-1.0	0.5-1.0
High-rate	10-35	0.8-2.0	1.2-2.5
Diatom. Earth	2.5-7.5	0.01-0.05	

Filter operation

Membrane filtration

- Membrane filtration spectrum
 - Micro-filtration (MF)
 - Ultra-filtration (UF)
 - Nano filtration (NF)
 - Reverse Osmosys (RO)
- Pre-treatment
- Trans membrane pressure (TMP)
- Backwash and routine cleaning procedures, CIP
- Related O&M costs energy, replacement and operation

Water treatment membrane structure

Consultancy and Engineering

Gateway to solutions

Microfiltration

- At level of 1 micron (=1/1000 mm)
- Mainly out of tank
- Low TMP < 1 mWC
- All types of membrane structure
- Partial bacteria removal
- Protozoa as an example, easy to filter out using MF, difficult to kill with chemicals

Ultrafiltration

- At level of 0.01-0.1 micron
- Removal of most bacteria
- TMP few mWC
- More intensive cleaning

Immersed UF

Nanofiltration

Desalination (RO)

Desalination

- Saline and sea water as drinking source
- Osmotic pressure
- Reverse osmosis
- Thermal methods
- BWRO and SWRO

Applied Pressure Semipermeable Membrane Direction of Water Flow

Softening

WATER TREATMENT PLANT

- To prevent scaling
- To improve health (not mandatory in all countries)
- Technologies:
 - Ion exchange
 - Crystallization
 - Reverse Osmosis

Adsorption

- Mainly GAC
- Adsorption bed
- Adsorption front progress
- Sizing

- Replacement / regeneration

Disinfection

The enemy – bacteria and virus

- Cryptosporidium
- Legionella
- And many more

Chemical disinfection

- Contact reaction oxidation
- Residual action
- Most frequent chemical chlorine
- Managing the health and environment risk
- Pretreatment required

UV radiation disinfection

- Inactivation of pathogen DNA (bacteria & virus), radiation dose
- Application closed reactor
- Lamp cleaning
- Combination with chemical treatment (odor and color removal by advanced oxidation)

Thanks

