



Water Globe Consulting

THE MIDDLE EAST DESALINATION RESEARCH CENTER

## Cost Estimating of SWRO Desalination Plants

Day 1: Plant Cost Fundamentals

June 25, 2013

15:45-16:30

1.5 Construction Costs for Post-treatment, Concentrate Management, and Other Facilities

Nikolay Voutchkov, PE, BCEE

### Construction Costs for Other Facilities -Outline

- Post-treatment Costs
- Concentrate Disposal Costs
- Waste and Solids Handling Costs
- Costs of Electrical and Instrumentation System
- Costs of Auxiliary and Service Equipment and Facilities
- Building Costs
- Startup, Commissioning and Acceptance Testing Costs

# **Permeate Post-treatment**



# **Post-Treatment**

- Corrosion Control Goals:
  - Alkalinity > 40 mg/L (as CaCO3);
  - Calcium Carbonate Precipitation Potential (CCPP) – 4 to 10 mg/L as CaCO3;
  - Larson Ratio < 5;</li>
  - Hardness > 50 mg/L as CaCO3;
  - pH 8.3 to 8.8.

- Disinfection and Finished Water Quality:
  - Chlorination;
  - Choramination;
  - Chlorine Residual Stability

     Effect of Bromide.

# **Addition of Alkalinity**

 <u>Carbonate &</u> <u>Bicarbonate Alkalinity</u>:
 <u>Provide Buffering</u> Capacity to Prevent pH Variation in the Distribution System.

- > Alkalinity Addition:
  - Addition of NaOH or Ca(OH)2 to Permeate Which Contains Carbonic Acid;
  - Addition of Carbonic Acid + Lime;
  - Addition of Sodium Carbonate or bicarbonate;

 Calcium Carbonate (Calcite) Contact Filters.

# **Post Treatment – Lime Addition**



#### Key System Elements:

- 1. Lime Silos and Feed System
- 2. Lime Contactors
- 3. CO2 Feed System
- 4. Acid Addition System
- 5. NaOH Addition System

## **Post-treatment – Calcite Filters**

- Check Permeate Quality for Conductivity;
- Compare Water Quality of Individual RO Trains;
- Check Chemical Feed and Mixing Systems – Lime/Calcite Quality & Quantity;
- Check Turbidity of Conditioned Water –
   Lime May Add Turbidity.





### Barcelona SWRO Plant has Once of the Most Advanced Calcite Filtration Technologies



Post-treatment Construction Costs

- Dependent on Target Water Quality:
  - Hardness
  - Alkalinity
  - pH
  - Need for Addition of Corrosion Inhibitors
  - Type of Disinfection
  - Need for Addition of Fluoride & Magnesium in the Drinking Water

Usually Between US\$80 and 275/m³/day

## Lime & Calcite/CO2 System Construction Costs



# SWRO Plant – Concentrate



## **Desalination Plant Waste Streams**



# **Concentrate Salinity & Flow**

$$TDS_{concentrate} = TDS_{feed} \left(\frac{1}{1-Y}\right) - \frac{Y \times TDS_{permeate}}{100(1-Y)}$$

 $Y = \frac{\text{Permeate flow rate}}{\text{Feed flow rate}}$ 

$$\begin{aligned} & \text{Q}_{\text{concentrate}} = \text{Q}_{\text{permeate}} \left( \frac{1}{Y} - 1 \right) \\ & \text{Y- Plant Recovery Rate (\%)} \end{aligned}$$

#### Example:

Plant Production Capacity,  $Q_{\text{permeate}} = 2.0 \text{ Ml/d};$ 

Plant Recovery, Y = 45 % (i.e., 0.45); **Qeoncentrate** = 2.0 ML/d (1/0.45 - 1) = 2.4 ML/d Concentrate – Most Widely Used Disposal Alternatives

Direct Ocean Outfall Discharge

Discharge to Sanitary Sewer

Co-Discharge with Power Plant Cooling Water

# **Direct Ocean Outfall Discharge**

- Used in Large Plants All Australian SWRO Plants; Ashkelon, Israel; Point Lisas, Trinidad; Desalination Plants in Cyprus and Most Plants in Spain.
- Key Issues Suitable Location for Adequate Blending and Dilution
- Difficult to Obtain Environmental License
- Costly for Large Plants Usually Requires the Construction of Long Outfall and Elaborate Diffuser Structure

## Alternatives for Dispersal of Saline Discharge

Use of Mixing Energy & Transport Capacity of Tidal Zone – Near-shore Discharge;

Use of the Buoyancy of Existing Fresh Water Discharge (Existing WWTP Outfall);

 Use the Buoyancy of Existing Thermal Discharge (Power Plant Cooling Water Outfall);

Build New Diffuser System Directing Discharge Up Inclined @ 45 to 60°.

# Near-Shore Discharge – Common Low-Cost Option

Near Shore Discharge Structures Are Usually Easier to Build and Operate than Long Outfalls



# Near-Shore vs. Diffuser Discharge

**Desalination Plant Discharge** 

man Lin Rom



ASHKELON DESALINATION PLANT

**Diffuser Discharge** 

## Near vs. Offshore Discharge - Costs



## **Power Plant Collocation Concept**



## **Key Benefits of Collocation With Power Plant**

Mutually Accelerated Dissipation of Salinity and Thermal Plumes.

- No Need for Construction of Separate Outfall – 10 to 30 % Construction Cost Savings.
- Minimal Environmental Impact:
  - No Beach or Ocean Floor Habitat Disturbance;
  - No New Ocean Source Water Collected Minimized Entrainment.
- Power Cost Savings.

# Comparison of Diffuser-based & Collocated Discharges



# **Construction Costs of Key Concentrate Disposal Methods**

| Concentrate Disposal Method                                    | Disposal Construction Cost<br>(US\$/m³.day) |  |
|----------------------------------------------------------------|---------------------------------------------|--|
| New Surface Water Discharge<br>(New Outfall with Diffusers)    | 50 – 750                                    |  |
| Collocation of Desalination Plant and<br>Power Plant Discharge | 10 - 30                                     |  |
| Co-Disposal With Wastewater Treatment<br>Plant Discharge       | 30 - 150                                    |  |
| Sanitary Sewer Discharge                                       | 5 – 150                                     |  |
| Deep/Beach Well Injection                                      | 200 – 625                                   |  |
| Evaporation Ponds                                              | 300 – 4,500                                 |  |
| Spray Irrigation                                               | 200 – 1,000                                 |  |
| Zero Liquid Discharge                                          | 1,500 – 5,000                               |  |
| Note: US\$1/m <sup>3</sup> .day = US\$3,785/MGD                | t                                           |  |

## Waste & Solids Handling Costs

#### Dependent on:

- Source Water TSS Concentration
- Acceptability of Solids Disposal to the Ocean by the Environmental Regulatory Body

Usually Between US\$15 and 75/m<sup>3</sup>.day for construction of solids retention and equalization basin & US\$20 – 180/m<sup>3</sup>.day for solids handling system with mechanical dewatering

# Costs of Electrical & Instrumentation System

## Dependent on:

- Salinity
- Temperature
- Number of RO Stages & Passes
- Level of Plant Automation
- Distance of Plant to High-voltage Power Supply Source

Usually Between US\$100 and 250/m³/day

Construction Costs of Auxiliary and Service Equipment and Facilities

#### Dependent on:

- Source Water Quality
- Staff Size
- Plant Capacity

## > Usually Between US\$30 and 150/m³/day

## **Building Construction Costs**

#### Dependent on:

- Source Water Quality
- Staff Size
- Plant Capacity

## Usually Between US\$50 and 100/m³/day

Construction Costs Associated with Startup, Commissioning and Acceptance Testing

- Dependent on:
  - Source Water Quality
  - Plant Capacity
  - Plant Complexity
  - Regulatory Requirements

> Usually Between US\$40 and 80/m³/day

## Summary of Construction (Direct) Capital Costs

|                                           | Percentage of Total Capital Cost<br>(%) |             |
|-------------------------------------------|-----------------------------------------|-------------|
| Cost Item                                 |                                         |             |
|                                           | Low-                                    | High-       |
|                                           | Complexity                              | Complexity  |
|                                           | Project                                 | Project     |
| Direct Capital (Construction) Costs       |                                         |             |
| 12. Site Preparation, Roads and Parking   | 1.5 – 2.0                               | 0.6-1.0     |
| 13.Intake                                 | 4.5 - 6.0                               | 3.0-5.0     |
| 14. Pretreatment                          | 8.5 – 9.5                               | 6.0 – 8.0   |
| 15.RO System Equipment                    | 38.0 - 44.0                             | 30.5 – 36.0 |
| 16.Post-Treatment                         | 1.5 – 2.5                               | 1.0 – 2.0   |
| 17. Concentrate Disposal                  | 3.0 - 4.0                               | 1.5 – 3.0   |
| 18. Waste and Solids Handling             | 2.0 - 2.5                               | 1.0 – 1.5   |
| 19.Electrical & Instrumentation Systems   | 2.5 – 3.5                               | 1.5 – 2.5   |
| 20. Auxiliary and Equipment and Utilities | 2.5 – 3.0                               | 1.0 – 2.0   |
| 21. Buildings                             | 4.5 – 5.5                               | 3.0 – 5.0   |
| 22.Start Up, Commissioning and            | 1.5 – 2.5                               | 1.0 – 2.0   |
| Acceptance Testing                        |                                         |             |
| Subtotal Direct (Construction) Costs      |                                         |             |
| (% of Total Capital Costs)                | 70.0 - 85.0                             | 50.0 - 68.0 |

## **Questions and Discussions**