

CPET, Continued
Professional
Education
Education
Training

Water Globe

Cost Estimating of SWRO Desalination Plants

Day 3: Desalination Project Costs - Trends, Examples and Interactive Session

June 27, 2013

10:30-12:00

3.2 Example of SWRO Project Cost Estimate

Nikolay Voutchkov, PE, BCEE

Example of Cost Estimate - Outline

- Project Description
- Breakdown of Project Capital Costs
- ▲ Annual O&M Costs
- Cost of Water Estimate

40 MLD SWRO Desalination Project – Mediterranean Water

- Plant Production Capacity:
 - Average Annual Production = 40 MLD
 - Minimum Production = 36 MLD
 - Maximum Production (Installed Capacity) = 44 MLD
 - Installed Capacity = 44 MLD (10 % operational margin)
- Plant Availability = 96 % (350 days per year)
- Open Offshore Intake Depth 10 m & 500 m Length
- Discharge with Diffusers 200 m length

Effect of Product Water Quality on Costs

#	Effect of Target Product Water Quality on Water Costs				
	Target Product Water	Construction Costs	O&M Costs	Cost of Water	
	Quality				
l,					
	TDS = 500 mg/L				
	Chloride = 250 mg/L Boron = 1 mg/L	1.00	1.00	1.00	
	_	1.00	1.00	1.00	
	Bromide = 0.8 mg/L				
	TDS = 250 mg/L				
	Chloride = 100 mg/L				
	Boron = 0.75 mg/L	1.15 - 1.25	1.05 - 1.10	1.10 - 1.18	
	Bromide = 0.5 mg/L				
	TDS = 100 mg/L				
	Chloride = 50 mg/L				
	Boron = 0.5 mg/L	1.27 - 1.38	1.18 - 1.25	1.23 - 1.32	
	Bromide = 0.2 mg/L				
	TDS = 30 mg/L				
	Chloride = 10 mg/L				
	Boron = 0.3 mg/L	1.40 - 1.55	1.32 - 1.45	1.36 - 1.50	
	Bromide = 0.1 mg/L				

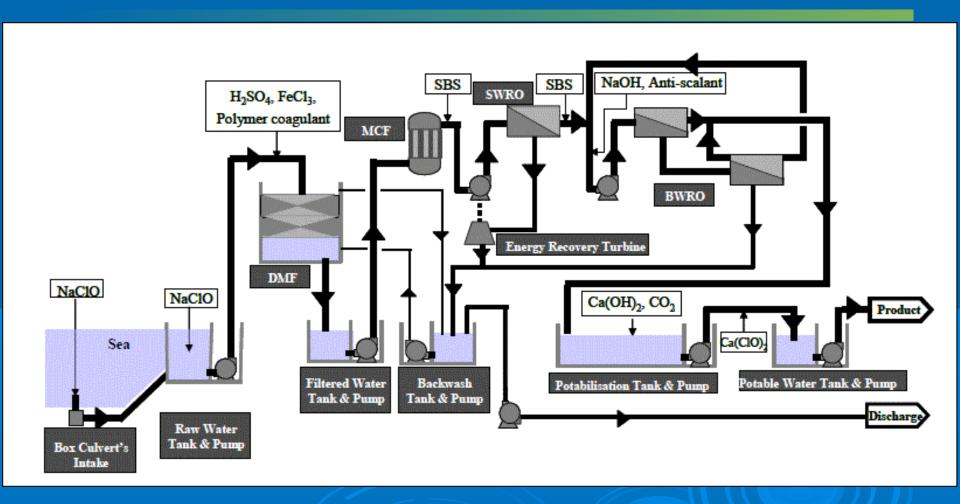
Source and Product Water Quality Single Pass RO System

Reverse Osmosis Permeate Water Quality Seawater Source – Mediterranean Sea

Water Quality	Mediterranean	Permeate Water Quality		
Parameter	Source Seawater	Single Pass SWRO	Split Partial Two	
	Quality	System	Pass RO System	
Temperature,0C	16-28	17-29	18-30	
рН	8.1	6.3-7.2	7.9-8.1	
Ca²+, mg/L	480	1.0-2.0	0.35-0.45	
Mg ²⁺ , mg/L	1,558	1.9-2.8	0.5-1.0	
Na+, mg/L	12,200	98-196	15-34	
K+, mg/L	480	3.0-5.5	0.8-1.8	
CO ₃ 2-, mg/L	5.6	0.0	0.0	
HCO ₃ -, mg/L	160	1.7-2.4	0.5-0.8	
\$O ₄ 2-, mg/L	3,190	2.9-6.3	1.4-2.95	
Cl-, mg/L	22,340	169-260	25-52	
F-, mg/L	1.4	0.7-1.1	0.5-0.8	
NO ₃ -, mg/L	0.00	0.00	0.00	
B-, mg/L	5.0	0.9-1.5	0.4-0.6	
Br-, mg/L	80	0.9-1.3	0.35-0.6	
TDS, mg/L	40,500	280-480	45-95	

Open Offshore Intake - Key Source Water Quality Parameters Related to Pretreatment Selection

- ightharpoonup Turbidity = 0.5 10 NTU (avg. = 2 NTU);
- Arr SDI₅ = 8 16 (avg. 10)
- ▲ Algal Count = 500 20,000 cells/L
- $^{\perp}$ TOC = 0.2 1.5 mg/L
- Arr Chlorophyll a = 0.2 0.8 µg/L


Selection of Pretreatment System

Source Water Quality	Recommended Configuration	Notes		
Turbidity < 0.1 NTU SDI < 2/TOC < 1	Cartridge Filters or Bag Filters Only	Grit Removal May be Needed		
Turbidity > 0.1 NTU < 5 NTU SDI < 5/ TOC < 1	Single Stage Dual Media Filters + Cartridge Filters Or MF/UF	Coagulant Addition Usually Not Needed if UF Used		
Turbidity > 5 NTU < 30 NTU SDI > 5/ TOC < 4	Single Stage Dual Media Filters + Cartridge Filters Or MF/UF	Coagulant Addition Usually Needed		
Turbidity > 30 NTU < 50 NTU SDI > 5/ TOC > 4 and/or Oil Spill Potential	Sedimentation/DAF + Single Stage Dual Media Filters + Cartridge Filters Or Sedimentation/DAF + MF/UF	Coagulant Addition Needed		
Turbidity > 30 NTU < 50 NTU SDI > 5/ TOC > 4 and High Oil Spill Potential	High-rate Sedimentation/DAF + Two Stage Dual Media Filters + Cartridge Filters Or High-rate Sedimentation/DAF + MF/UF	Coagulant Addition Needed		

Key Observations for Selecting Plant Configuration

- Intake Depth > 8 meters means low fouling source water
- - Single Stage Gravity Granular Media Filtration Pretreatment
 - High Plant Recovery 45 %
- ▲ If Water Was Highly Fouling Water two stage filtration and lower recovery (38 to 40 %) needed

40 MLD SWRO Plant Schematic

Capital Costs

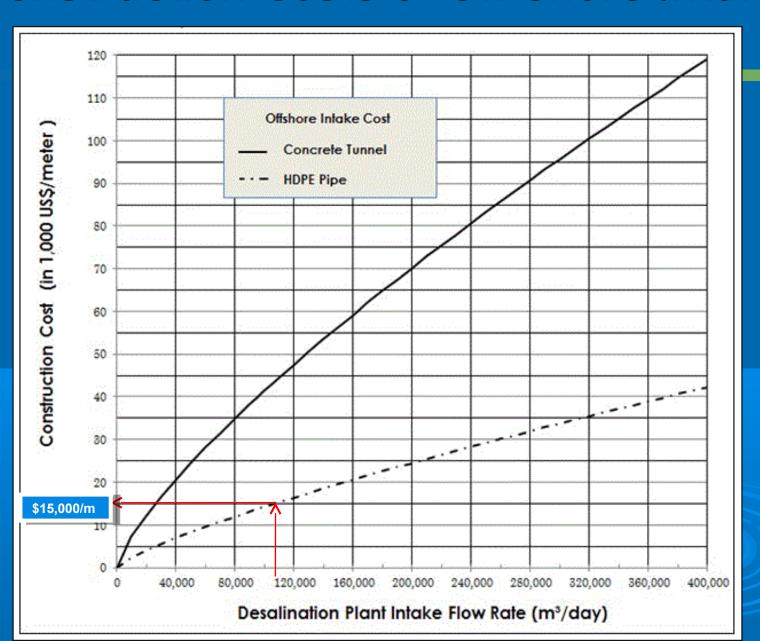
Site Preparation Costs

- Site Preparation Costs @ US\$15-200/m³.day = US\$15/m³.day x 40,000 m³.day = US\$0.6 MM
- Low End of the Cost Bracket Selected Site is Not Contaminated and is Free from Structures and Other Infrastructure.

Determination of Intake Design Flow

▲ Intake Design Flow = <u>Product Water Flow x 1.1</u>

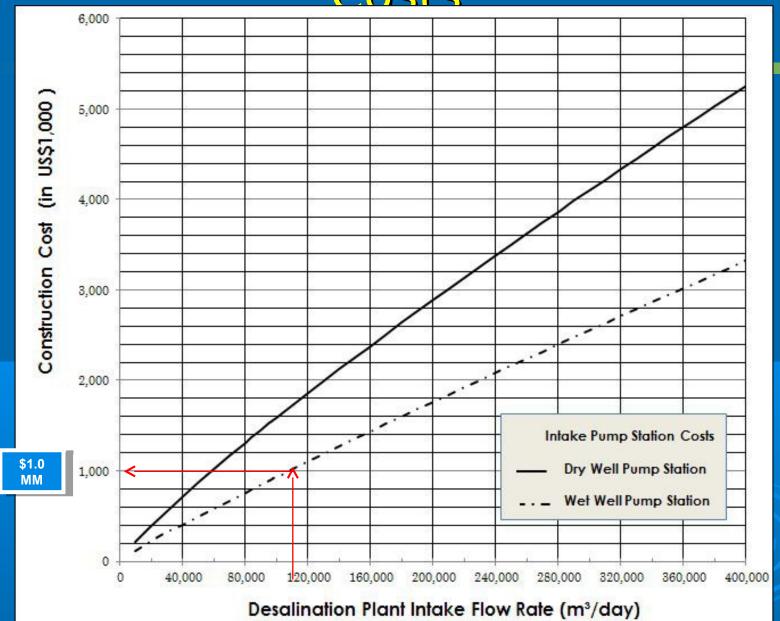
Recovery (%)


Intake Flow for the 40 MLD Plant:

- Arr Average = 40 MLD x 1.1/(0.45) = 98 MLD
- ightharpoonup Minimum Flow = 36 MLD x 1.1/(0.45) = 88 MLD
- Arr Max Flow = 44 MLD x 1.1/(0.45) = 108 MLD

Intake Configuration

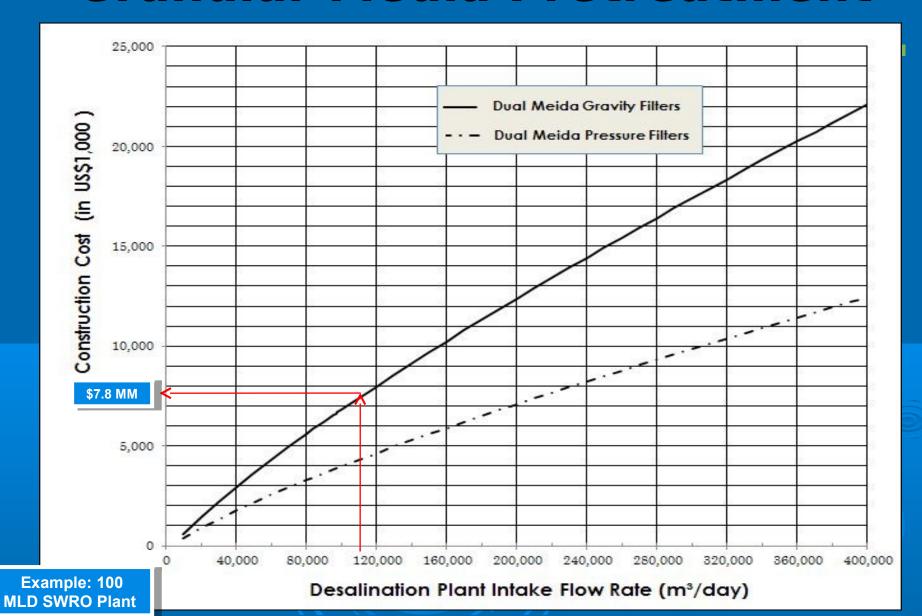
- Onshore Pump Station


Construction Costs of Off-shore Intakes

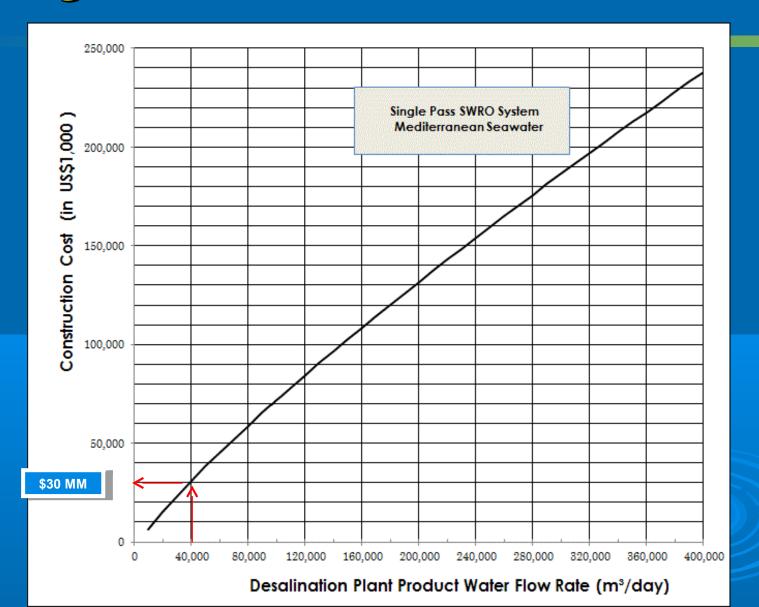
Offshore Intake Cost

- Open Intake Cost = Unit Intake Cost x Length of Intake Pipe
- Open Intake Cost = US\$15,000/m x 500 m = US\$7.5 million

Onshore Intake Pump Station Costs


Total Intake Construction Cost

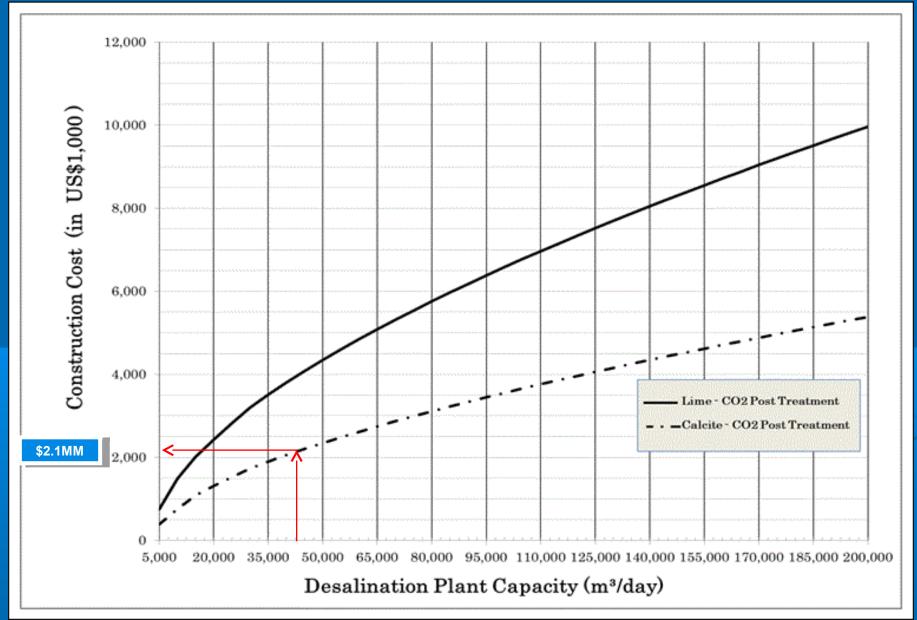
US\$7.5 MM


US\$1.0 MM

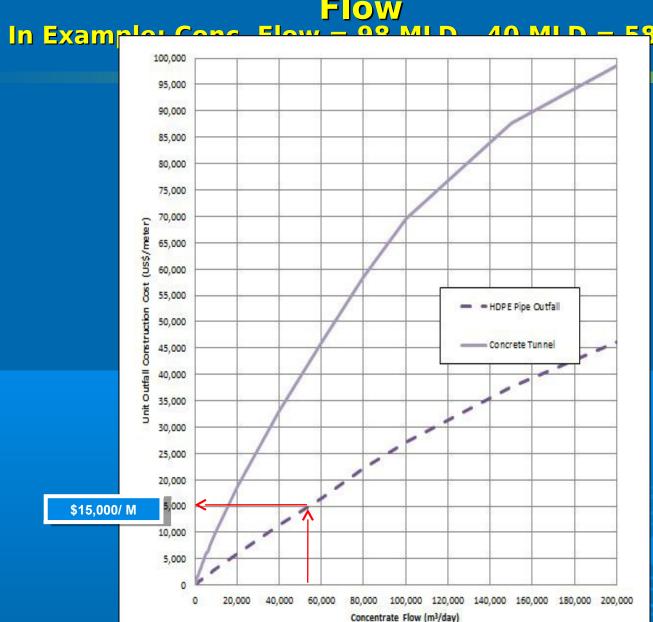
Onshore Intake Pump Station = <u>US\$1.0 MM</u>
Total = US\$9.5 MM

Construction Cost of Granular Media Pretreatment

RO System Construction Cost - Single Pass Mediterranean Water


Source Water Quality - Cost Impacts

Seawater Source	Unit Construction Costs	Unit O&M Costs	Unit Capital Costs
Mediterranean	1.0	1.0	1.0
Gulf of Oman	1.09	1.07	1.08
Red Sea	1.12	1.10	1.11
Arabian Gulf	1.16	1.14	1.15


Effect of Product Water Quality on RO System Costs

#	Effect of Target Product Water Quality on Water Costs				
	Target Product Water	Construction Costs	O&M Costs	Cost of Water	
	Quality				
	TDS = 500 mg/L				
Ш	Chloride = 250 mg/L				
Ш	Boron = 1 mg/L	1.00	1.00	1.00	
	Bromide = 0.8 mg/L	Single Pass RO System			
	TDS = 250 mg/L				
	Chloride = 100 mg/L				
	Boron = 0.75 mg/L	1.15 - 1.25	1.05 - 1.10	1.10 - 1.18	
	Bromide = 0.5 mg/L				
		Partial Second Pass RO System			
	TDS = 100 mg/L				
Ш	Chloride = 50 mg/L				
	Boron = 0.5 mg/L	1.27 - 1.38	1.18 - 1.25	1.23 - 1.32	
Ш	Bromide = 0.2 mg/L	- 11			
		Full Two-Pass RO System			
	TDS = 30 mg/L			_	
	Chloride = 10 mg/L				
	Boron = 0.3 mg/L	1.40 - 1.55	1.32 - 1.45	1.36 - 1.50	
	Bromide = 0.1 mg/L				
	Full Two-Pass RO System + IX				

Lime & Calcite/CO2 System Construction Costs

Near-shore Discharge - Costs Conc. Flow = Intake Flow - Product Water Flow

Offshore Discharge Cost

- Diffuser Outfall Cost = Unit Outfall Cost x Length of Discharge Pipe
- Diffuser Outfall Cost = US\$15,000/m x 200 m = US\$3.0 million

Other Construction Costs Example for 40 MLD Plant

- Waste and Solids Handling @ US\$15-75/m³.day (Retention Pond) = US\$45/m³.day x 40,000 m³.day = US\$1.8 MM
- ➤ Electrical and Instrumentation @ US\$100-250/m³.day = US\$200/m³.day x 40,000 m³.day = US\$8.0 MM
- Auxiliary & Service Facilities @ US\$30-150/m³.day = US\$80/m³.day x 40,000 m³.day = US\$3.2 MM
- Buildings @ US\$50-100/m³.day = US\$60/m³.day x 40,000 m³.day = US\$2.4 MM
- Startup, Commissioning and Acceptance Test @ US\$40-80/m³.day = US\$50/m³.day x 40,000 m³.day = US\$2.0 MM

Direct Capital Costs - Example - 40,000 m³/day Plant

Cost Item	Cost (US\$)
Site Preparation, Roads and Parking	0.6 MM
Intake	9.5 MM
Pretreatment	7.8 MM
RO System Equipment	30.00 MM
Post Treatment	2.1 MM
Concentrate Disposal	3.0 MM
Waste and Solids Handling	1.8 MM
Electrical & Instrumentation	8.0 MM
Auxiliary and Service Facilities	3.2 MM
Buildings	2.4 MM
Startup, Commissioning and Acceptance Testing	2.0 MM
Direct Capital (Construction) Costs	US\$70.4 MM

Indirect Capital Costs - 40,000 m³/day Plant

Cost Item	Unit Cost (US\$/m³.day)	Cost (US\$)
Preliminary Engineering	30-100	1.2 MM
Pilot Testing	10-50	0.4 MM
Detailed Design	75-175	3.0 MM
Construction Management and Oversight	40-80	1.6 MM
Administration, Contracting and Management	25-50	1.0 MM
Environmental Permitting and Public Outreach	20-200	0.8 MM
Legal Services	20-150	0.8 MM
Interest During Construction	20-180	0.8 MM
Debt Service Reserve Fund	80-340	3.2 MM
Other Financing Costs	20-80	0.8 MM
Contingency	5-10 % of Total	4.6 MM
Indirect Capital Costs		\$18.2 MM

Total Capital Costs

Total Capital Costs = Direct + Indirect Capital Costs = US\$70.4MM + US\$18.2 MM = US\$88.6 MM

Example for 20 years payment term 5% interest rate

 $\overline{\text{CRF}} = [(1+0.05)^{20} - 1] / [0.05 (1+0.05)^{20}] = 12.462$

Capital Recovery Costs = Cap/(CRF x Qp x 365 d) = US\$88.6 MM/(12.462 x 40,000m³/d x 365 d) = 8\$0.49/m³

Operation and Maintenance Costs

Total O&M Cost Breakdown

Annual O&M Cost Breakdown

Cost Item	Percentage of Total O&M Cost (%)		
	Low-Complexity Project	High-Complexity Project	
Variable O&M Costs			
5. Power	45.0 – 61.0	35.0 – 58.0	
6. Chemicals	3.0 – 6.5	5.5 – 9.0	
7. Replacement of Membranes and Cartridge Filters	5.0 – 9.0	6.5 – 11.0	
8. Waste Stream Disposal	2.5 – 5.5	3.5 – 7.0	
Subtotal - Variable O&M Costs	55.5 - 82.0	50.5 - 85.0	
Fixed O&M Costs			
5. Labor	5.0 – 9.5	4.0 – 11.0	
6. Maintenance	6.5 – 12.5	3.0 – 13.0	
7. Environmental and Performance Monitoring	0.5 – 4.0	1.0 – 5.0	
8. Indirect O&M Costs	7.5 – 18.5	7.0 – 20.5	
Subtotal - Fixed O&M Costs	19.5 – 44.5	15.0 – 49.5	
Total O&M Costs	100 %	100 %	

Energy Use and Function of Water Source (Medium & Large SWRO Plants)

(113313111 31 231 3 3 1	1113 11311113
Seawater Source	SWRO System Energy Use (kWh/m³)
Mediterranean	3.6 – 4.0
Gulf of Oman	3.9 – 4.2
Red Sea	4.0 – 4.3
Arabian Gulf	4.2 - 4.5

O&M Costs - 40,000 m³/day Plant

Cost Item	Unit Cost (US\$/m³)	Cost (Million US\$/year)
Variable O&M Costs		
Power @ 4.0 kWh/m³ @ US\$0.06/kWh	Function of Water Source and Tariff	3.504
Chemicals	0.025-0.075	0.365
Replacement of Membranes and Cartridges	0.020-0.070	0.292
Waste Stream Disposal	0.015-0.035	0.219
Total Variable O&M Costs		4.380 MM
Fixed O&M Costs		
Labor	0.015-0.040	0.219
Maintenance – 2 to 4 % of Direct Capital Costs	0.035-0.075	0.511
Environmental and Performance Monitoring	0.005-0.015	0.073
Indirect O&M Costs	0.025-0.075	0.365
Total Fixed O&M Costs		1.168 MM
Total O&M Costs		\$5.548 /year

Cost of Water - Variable and Fixed Components

	i valiable alla ilikea eeliipellelle		
Cost of Water Item	Costs, (US\$/m³)	Costs, (% of Total)	
Variable Cost of Water Components			

Total Variable Costs

Total Fixed Costs

Replacement of RO Membranes & Cartridge Filters

0.240

0.025

0.020

0.015

0.30

0.490

0.015

0.035

0.005

0.025

0.57

0.87

27.6%

2.9%

2.3%

1.7%

34.5%

56.3%

1.7%

4.0%

0.6%

2.9%

65.5%

100 %

Power

Labor

Maintenance

Other O&M Costs

Chemicals

Waste Stream Disposal

Capital Recovery Costs

Fixed Cost of Water Components

Environmental & Performance Monitoring

Total Water Production Costs

